Regulatory Analysis Form (Completed by Promulgating Agency)	INDEPENDENT REGULATORY REVIEW COMMISSION				
(All Comments submitted on this regulation will appear on IRRC's websit	RECEIVED				
(1) Agency	JAN 2 7 2020				
Environmental Protection	Independent Regulatory Review Commission				
(2) Agency Number: 7					
Identification Number: 552	IRRC Number: 325)				
(3) PA Code Cite:					
25 Pa Code Chapter 250					
(4) Short Title:					
Administration of the Land Recycling Program	*				
(5) Agency Contacts (List Telephone Number and Er	nail Address):				
Primary Contact: Laura Edinger, (717) 783-8727; <u>lec</u> Secondary Contact: Jessica Shirley, (717) 783-8727;					
(6) Type of Rulemaking (check applicable box):					
□ Proposed Regulation □ Final Regulation □ Final Omitted Regulation	ion Certification by the Governor				
(7) Briefly explain the regulation in clear and nontech	nical language. (100 words or less)				
This rulemaking proposes to amend 25 Pa. Code Chapter 250 (relating to administration of the land recycling program) to update Statewide health standard medium-specific concentrations (MSC) pertaining to cleanup of soil and groundwater contamination for many contaminants. The Department of Environmental Protection (DEP or Department) recommends these updates as part of its three-year review. This rulemaking also proposes to add MSCs for three new contaminants, namely Perfluorooctanoic Acid (PFOA), Perfluorooctance Sulfonate (PFOS), and Perfluorobutane Sulfonate (PFBS). These contaminants are within the Per- and Poly-fluoroalkyl Acid (PFAS) family of compounds for which the U.S. Environmental Protection Agency (EPA) has published toxicological data. The proposal would also clarify administrative elements of Chapter 250.					
(8) State the statutory authority for the regulation. In	clude specific statutory citation.				
This proposed rulemaking is authorized under section Environmental Remediation Standards Act (Act 2) direct the Board to adopt and amend periodically by	(35 P.S. §§ 6026.104(a) and-6026.303(a)), which				

substances for each environmental medium, including any health-based standards adopted by the Federal government by regulation or statute, and health advisory levels (HAL), and which direct the Environmental Quality Board to promulgate appropriate mathematically valid statistical tests to define compliance with Act 2, and other regulations as necessary to implement the provisions of Act 2; and section 1920-A of The Administrative Code of 1929 (71 P.S. § 510-20), which authorizes the Board to formulate, adopt and promulgate rules and regulations that are necessary for the proper work of the Department.

(9) Is the regulation mandated by any federal or state law or court order, or federal regulation? Are there any relevant state or federal court decisions? If yes, cite the specific law, case or regulation as well as, any deadlines for action.

This proposed rulemaking is not mandated under Federal law. Federal law, however, encourages states to develop programs for voluntary clean-up of contaminated sites. See 42 U.S.C. § 9628 (relating to State response programs). On April 21, 2004, the U.S. Environmental Protection Agency (EPA) and the Department signed the One Cleanup Program Memorandum of Understanding (One Cleanup Program) under the agencies' authority under the Federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. § 9601—9675) and Act 2 (35 P.S. 6026.101—6026.908), respectively, that requires DEP to ensure, among other things, that voluntary responses conducted under Act 2 are protective of human health and the environment and that DEP review every report relating to the investigation, assessment and clean-up of a site submitted by a remediator. The One Cleanup Program encourages DEP regularly to review the efficacy of Chapter 250.

State law requires the promulgation of this rulemaking. Section 303(a) of Act 2, 35 P.S. § 6026.303(a), mandates that "[t]he Environmental Quality Board shall promulgate Statewide health standards for regulated substances for each environmental medium," and that "[t]he standards shall include any existing numerical residential and nonresidential health-based standards adopted by the Department and by the Federal Government by regulation or statute, and health advisory levels [HAL]." The term "HAL" is defined in section 103 of Act 2 (35 P.S. § 6026.103) as "[t]he health advisory levels published by the United States Environmental Protection Agency for particular substances." When section 303(a) and this definition of HALs are read in context, they require that the Environmental Quality Board (EQB) adopt as an MSC a HAL once published by EPA. In 2016, EPA published HALs for PFOS and PFOA. For both substances, the EQB is proposing in this rulemaking to include the standards from those HALs as Act 2 groundwater standards and is using the underlying data from those HALs to develop soil standards. For PFBS, the EQB is proposing both groundwater and soil MSCs that incorporate data for its calculations from an EPA Provisional Peer-Reviewed Toxicity Value (PPRTV) study, which EPA published in July 2014. For PFBS, PFOS, and PFOA, Section 250.306 (relating to ingestion numeric values) provides the applicable formulas under which the Department calculates the proposed soil and groundwater MSCs.

This rulemaking is also required under 25 Pa. Code § 250.11 (relating to periodic review of MSCs), which requires DEP to regularly review new scientific information that relates to the basis of the MSCs and to propose appropriate regulations to the EQB whenever necessary, but not later than 36 months from the effective date of the most recently promulgated regulations. The most recent of these rulemakings took effect on August 26, 2016. See 46 Pa.B. 5655 (August 26, 2016).

(10) State why the regulation is needed. Explain the compelling public interest that justifies the regulation. Describe who will benefit from the regulation. Quantify the benefits as completely as possible and approximate the number of people who will benefit.

The proposed rulemaking is needed to comply with the Department's obligation under 25 Pa. Code § 250.11 to review scientific information that serves as the basis for Act 2 MSCs and to propose appropriate changes to the EQB, when necessary. The proposed rulemaking is also necessary to incorporate the HALs published by EPA regarding PFOS and PFOA. Finally, the proposed rulemaking is needed to clarify a variety of administrative components related to different reports necessary to comply with Chapter 250 site remediation requirements.

There are several public interests justifying this proposed rulemaking.

First, the public would benefit from having groundwater and soil MSCs that reflect up-to-date science and toxicological information. The changes in the MSCs in this proposed rulemaking would serve both the public and the regulated community because they would provide MSCs based on the most up-to-date health and scientific information for substances that cause cancer or have other toxic effects on human health. The EQB first published Chapter 250 regulations in 1997. 27 Pa.B. 4181 Section 104(a) of Act 2, 35 P.S. § 6026.104(a), recognizes that these standards must be updated over time as better science becomes available and as the need for clarification or enhancement of the program becomes apparent.

Potential contamination of soil and groundwater from accidental spills and unlawful disposal can impact almost any resident of this Commonwealth. Many of the chemical substances addressed in this proposed rulemaking are systemic toxicants or carcinogens as defined under Act 2 and, in some cases, are widespread in use. Examples of substances that contain toxic or carcinogenic properties include gasoline and petroleum products, solvents, elements used in the manufacture of metals and alloys, pesticides, herbicides, and some dielectric fluids previously contained in transformers and capacitors. Releases of regulated substances not only pose a threat to the environment, but also could affect the health of the general public if inhaled or ingested. New research on many of these substances is frequently developed and provides the basis for protection of the residents of this Commonwealth through site cleanup requirements.

Although most of the changes to soil numeric values in this proposed rulemaking would decrease the numeric values, 17% of the values would increase. Increases in values reflect updated information related to exposure limitations to the substances and acknowledge that a higher standard is better representative of those substances' exposure thresholds.

Second, the public would benefit from the promulgation of soil and groundwater MSCs for PFOS, PFOA and PFBS because the MSCs would allow remediators to address groundwater and soil contamination and thereby lessen public exposure to the contaminants. These remediators tend to be owners, operators or purchasers – or their contractors – of properties and facilities including, or located in the vicinity of, military bases, municipalities, and other locations that used or stored fire-fighting foam. EPA reports that contamination from these chemicals has also been associated with manufacturing textiles, food packaging, personal care products, and other materials such as cookware that are resistant to water, grease and stains. See Fact Sheet, EPA, PFOA & PFOS Drinking Water Health Advisories (November 2016) (available at https://www.epa.gov/sites/production/files/2016-06/documents/drinkingwaterhealthadvisories pfoa pfos updated 5.31.16.pdf).

Third, remediators would benefit from the amendments that clarify administrative elements of Act 2, making for a more efficient and streamlined remediation process.

The benefits of this proposed rulemaking are difficult to quantify because, unlike other statutory or permitting schemes, Act 2 does not prevent contamination but instead provides remediators with a variety of options to address sites that have existing contamination. In that sense, the proposed rulemaking, consistent with Act 2, benefits the public because it allows for more efficient and more expedient remediation and reuse of contaminated areas.

(11) Are there any provisions that are more stringent than federal standards? If yes, identify the specific provisions and the compelling Pennsylvania interest that demands stronger regulations.

No provisions are more stringent than Federal cleanup standards. In fact, Act 2 prohibits any standards that are more stringent than Federal standards. Act 2 states that "[t]he department shall not establish procedures for determining attainment of remediation standards where maximum contaminant levels and health advisory levels have already been established for regulated substances." See 35 P.S. § 6026.301(c) (related to determining attainment). Act 2 further states that "standards adopted under this section [Section 303 Statewide health standard] shall be no more stringent than those standards adopted by the Federal Government." See 35 P.S. § 6026.303(a) (relating to Statewide Health Standard). Federal standards typically are MCLs promulgated by EPA to address drinking water under the Federal Safe Drinking Water Act.

The Department anticipates receiving comments that it may not promulgate standards that are more stringent than EPA Regional Screening Levels (RSLs) related to various contaminants. RSLs are initial screening levels used by EPA at Federal CERCLA "Superfund" sites to evaluate the sites' potential contamination levels to determine if EPA or another party should pursue further response action. RSLs are not Federal "standards" such as MCLs. Further explanation of EPA RSLs can be found at: https://www.epa.gov/risk/regional-screening-levels-frequent-questions#Background. As noted above, DEP standards under Act 2 are not restricted by and may be more stringent than EPA RSLs.

(12) How does this regulation compare with those of the other states? How will this affect Pennsylvania's ability to compete with other states?

The proposed updates to Chapter 250 would not affect Pennsylvania's ability to compete with other states.

The existing Chapter 250 regulations provide a uniform Statewide health standard that is not available in many other states. In comparison, the Federal government and many states do not have similar generic cleanup values and instead require a site-specific risk analysis at every site to establish a numeric value that is then used to determine the completion of soil and groundwater cleanup. Act 2 provides for a Statewide health standard that can be used as an efficient way to clean up sites, particularly where small spills and releases contaminate soil. This does not negate the opportunity to conduct a risk analysis. Act 2 also provides the ability to conduct a risk analysis to establish a cleanup value on an individual-site basis through the site-specific cleanup standard.

The existing regulations and the proposed rulemaking promote and facilitate the remediation and redevelopment of idle and underutilized commercial and industrial sites while protecting the public health and the environment.

(13) Will the regulation affect any other regulations of the promulgating agency or other state agencies? If yes, explain and provide specific citations.

The proposed rulemaking would not directly affect any of the Department's existing regulations or any regulations promulgated by other state agencies. While some Department regulations incorporate elements of Chapter 250 by reference, this proposed rulemaking would not require the Department to update any other regulations separate from Chapter 250. For example, Chapter 245 regulations (relating to Administration of Storage Tank and Spill Prevention Program) require that various components of storage tank spill corrective actions comport with site investigation or remediation requirements within Chapter 250.

(14) Describe the communications with and solicitation of input from the public, any advisory council/group, small businesses and groups representing small businesses in the development and drafting of the regulation. List the specific persons and/or groups who were involved. ("Small business" is defined in Section 3 of the Regulatory Review Act, Act 76 of 2012.)

The Department worked with the Cleanup Standards Scientific Advisory Board (CSSAB) during the development of this proposed rulemaking. CSSAB, established by Section 105 of Act 2 (35 P.S. § 6026.105), consists of persons representing a cross-section of experience, including engineering, biology, hydrogeology, statistics, medicine, chemistry, toxicology and other related fields. The purpose of the CSSAB is to assist the Department and the EQB in developing Statewide health standards, determining the appropriate statistically and scientifically valid procedures and risk factors to be used, and providing other technical advice as needed to implement Act 2. During CSSAB meetings on August 1, 2018, February 13, 2019, June 12, 2019, and October 29, 2019, CSSAB members were given the opportunity to review and provide feedback on draft regulatory amendments to Chapter 250. The Department worked with the CSSAB to resolve concerns and agreed to evaluate additional suggestions during the next review cycle for this rulemaking. Following these presentations and discussions, the CSSAB issued a letter regarding the proposed regulatory amendments included in this rulemaking. Specifically, the CSSAB noted concern related to the MSCs for vanadium.

A listing of CSSAB members and minutes of CSSAB meetings are available on the Department's website at www.dep.pa.gov (select "Public Participation," then "Advisory Committees").

(15) Identify the types and number of persons, businesses, small businesses (as defined in Section 3 of the Regulatory Review Act, Act 76 of 2012) and organizations which will be affected by the regulation. How are they affected?

The proposed amendments to Chapter 250 would affect owners of contaminated sites, operators of commercial and industrial facilities where hazardous substances are spilled onto soil or are released into groundwater, and purchasers of historically contaminated brownfield sites that are intended for redevelopment. A brownfield site is a property that's current or future use is impaired by a real or perceived contamination. This proposed rulemaking would also protect public health by minimizing exposure to substances released into the shared environment.

Overall, no particular category of person, business or organization is expected to be substantially adversely affected by the proposed updates to Chapter 250. A majority of the small businesses that DEP can identify as potentially being affected by this proposal are owners of small gasoline stations. For many of the impacted businesses, the costs would be absorbed through insurance policies because many of these businesses are required under section 704(a)(1) of the Storage Tanks and Spill Prevention Act (35 P.S. § 6021.704(a)(1) (relating to establishment of fund)) to participate in the Underground Storage Tank Indemnification Fund. This fund provides insurance coverage for the costs to clean up releases from underground storage tanks, regardless of the MSC value used at the site.

In addition to gasoline stations, the types of businesses that may be affected by this proposed rulemaking include fuel distribution facilities, commercial facilities that use toxic or carcinogenic chemicals, manufacturing operations and redevelopers of brownfield sites.

There are approximately 12,000 facilities in this Commonwealth that contain regulated underground and above ground storage tanks, including gasoline stations and fuel distribution and storage facilities. Of those 12,000 facilities, a portion includes small gasoline station owners. Small businesses also make up some of the commercial facilities that use toxic or carcinogenic substances. Because of the broad potential reach of this proposed rulemaking, DEP cannot reasonably identify further specifics on the number of small businesses that would potentially be affected by property contamination. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. Generally, any cost related to a given site remediation depends in large part on which regulated substances are being remediated and what the specific soil and groundwater conditions are at the site.

The proposed changes to Chapter 250 are not expected to increase costs or provide any significant savings for the regulated community. Chapter 250 contains MSCs for 400 regulated substances. The MSCs are divided into two environmental media: groundwater and soil. See, for example, §§ 250.304 and 250.305 (relating to MSCs for groundwater; and MSCs for soil.) The same regulated substance – for example, Trichloroethylene (TCE) – may have standards in both soil and groundwater. The soil MSCs provide standards for direct contact with and ingestion of soil. The groundwater MSCs provide standards related to human consumption of groundwater or the inhalation of volatile substances in groundwater. Under this proposal, the MSC values for many regulated substances are being changed for a variety of reasons. The two most common reasons for the proposed changes are Federal agency (including EPA and U.S. Department of Health Agency for Toxic Substances and Disease Registry) changes in toxicity values that are used in calculating MSC values and a change in the EPA's underlying assumption of a person's average daily consumption of water from 2 liters a day (L/day) to 2.4L/day. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate that a more stringent cleanup is required at a site and increasing the values may indicate that a less stringent cleanup is required at a site.

The financial impact on a given site remediation depends – and under the proposal would depend – on the regulated substances being remediated and the soil and groundwater conditions at a particular site. For example, a site with a tight clay soil profile might not allow contaminants to spread horizontally or vertically, in which case the amount of soil to be excavated would not significantly change to meet a lower or higher MSC value.

In addition to the proposed changes in MSCs, this proposed rulemaking includes amendments to provide clarity to the administrative requirements and to ensure that references to various guidance and other sources are appropriate and consistent. These amendments would streamline the remediation process for the Department and for developers.

Accordingly, the Department believes that there would be little if any adverse impact to any particular category of person, business (including small businesses) or organization. Please also see the response to item (10), above, regarding benefits, and to item (24), below, for more information regarding small businesses.

(16) List the persons, groups or entities, including small businesses that will be required to comply with the regulation. Approximate the number that will be required to comply.

This proposed amendment to Chapter 250 would impact any person addressing a release of a regulated substance at a property, whether voluntarily or as a result of an order by the Department but would not impact any particular category person with additional or new regulatory obligations. Under Act 2, a remediator may voluntarily select the standard to which to remediate. To complete a remediation, a person must then comply with all relevant remediation standards and administrative requirements. This proposed rulemaking would not affect the voluntary nature of Act 2.

The types of businesses that may need to comply with the regulations include gasoline stations, fuel distribution facilities, commercial facilities that use toxic or carcinogenic chemicals, manufacturing operations and redevelopers of brownfield sites. There are about 12,000 facilities in this Commonwealth that contain regulated underground and aboveground storage tanks, including gasoline stations and fuel distribution and storage facilities. Some of these facilities would include small gasoline station owners. Small businesses would also make up some of the commercial facilities that use toxic or carcinogenic substances. Not all of these facilities have releases or accidental spills that result in a cleanup obligation.

The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. The Department does not expect that the proposed amendments would impact the number of remediations voluntarily completed or those that must be completed as a result of Department enforcement actions.

As noted above in the response to Question 15, while these proposed amendments would not likely impact a specific category of person or company, the amendments would still affect many types of responsible parties who need to address contamination under Chapter 250. The Department expects the impact of the proposed updates to Chapter 250 to be insignificant on persons and businesses that are attempting to complete the remediation process under Chapter 250.

Please also see the response to Question 15.

(17) Identify the financial, economic and social impact of the regulation on individuals, small businesses, businesses and labor communities and other public and private organizations. Evaluate the benefits expected as a result of the regulation.

The proposed amendments to the Statewide health MSCs reflect the latest toxicological data on health effects on humans exposed to hazardous and toxic chemicals. Updating the MSCs in this manner helps

to assure potentially affected residents of this Commonwealth and persons, including businesses, small businesses and other organizations, interested in buying and redeveloping contaminated sites that the MSCs are protective of human health.

Financially and economically, the Department expects the impact of the proposed amendments to Chapter 250 to be insignificant costs increases and insignificant cost savings for the regulated community. Under this proposal, the MSC values for many regulated substances are being changed for a variety of reasons. The two most common reasons for the proposed changes are Federal agency (including EPA and U.S. Department of Health Agency for Toxic Substances and Disease Registry) changes in toxicity values that are used in calculating MSC values and a change in the EPA's underlying assumption of a person's average daily consumption of water from 2L/day to 2.4L/day. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate that a more stringent cleanup is required at a site and increasing the values may indicate that a less stringent cleanup is required at a site. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. The Department does not expect that the proposed amendments would impact the number of remediations voluntarily completed or the number that must be completed because of Department enforcement actions.

Further, the proposed updates to Statewide health standard MSCs would not affect a remediator's ability to choose one or a combination of cleanup standards.

The Department believes that any potential impacts to the regulated community would be insignificant.

This proposed rulemaking will benefit all citizens of the Commonwealth. The proposed amendments to the Statewide health MSCs would reflect the latest toxicological data on human health effects that can occur when humans are exposed to hazardous and toxic chemicals. Updating the MSCs based on the latest toxicological data helps to assure potentially affected residents of this Commonwealth and persons, including businesses, small businesses and other organizations, interested in buying and redeveloping contaminated sites, that the MSCs are protective of human health.

Not only would this proposed rulemaking update existing MSCs, but it would also add groundwater standards for PFOS and PFOA from the HALs EPA published in 2016 and soil standards for PFOS and PFOA using the underlying data from the EPA HALs, as well as the groundwater and soil PFBS MSCs generated using EPA's Provisional Peer-Reviewed Toxicity Values (PPRTV) data. Having these new MSCs would allow remediators to address PFOS, PFOA and PFBS groundwater and soil contamination. This would benefit the public by lessening public exposure to these contaminants. This would also benefit remediators wishing to remediate contaminated sites, who tend to be owners, operators or purchasers – or their contractors – of properties and facilities include, or are at or near, military bases, municipalities, and other locations that used or stored fire-fighting foam.

Remediators would benefit from the amendments that clarify many of the administrative elements of Act 2, making for more efficient and streamlined Act 2 remediations.

Please also see the response to Question 10.

(18) Explain how the benefits of the regulation outweigh any cost and adverse effects.

As described more fully in the responses to Questions 10 and 17, there are important benefits to this proposed rulemaking. They include protecting the public with updated MSCs reflecting the latest toxicological data, adding new MSCs for 3 chemical compounds (PFOS, PFOA and PFBS), exposure to which, according to EPA, could cause adverse effects in humans, including developmental effects to a fetus during pregnancy or to infants during breastfeeding, cancer (e.g., testicular, kidney), liver effects (e.g., tissue damage), immune effects (e.g., antibody production), thyroid effects, and others (e.g., cholesterol). The proposed amendments would also streamline Act 2 remediations.

These benefits outweigh any costs and adverse effects of the proposed rulemaking, which the Department expects to be insignificant.

The proposed amendments to the Statewide health MSCs reflect the latest toxicological data on human health effects that can occur when humans are exposed to hazardous and toxic chemicals. Updating the MSCs in this manner helps to assure potentially affected residents of this Commonwealth and persons, including businesses, small businesses and other organizations, interested in buying and redeveloping contaminated sites that the MSCs are protective of human health. In particular, the proposed rulemaking would allow remediators to address PFOS and PFOA groundwater and soil contamination.

The Department anticipates little if any cost or adverse effects from this proposal. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth.

The cost impact on a given site remediation would depend on the regulated substances being remediated and the soil and groundwater conditions at the site. For example, a site with a tight clay soil profile might not allow contaminants to spread horizontally or vertically, in which case the amount of soil to be excavated would not significantly change to meet a lower or higher MSC value.

Please also see the responses to Questions 10 and 17.

(19) Provide a specific estimate of the costs and/or savings to the **regulated community** associated with compliance, including any legal, accounting or consulting procedures which may be required. Explain how the dollar estimates were derived.

The Department anticipates little if any costs or savings from this proposal. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. The cost impact on a given site remediation would depend on the regulated substances being remediated and the soil and groundwater conditions at the site. For example, a site with a tight clay soil profile might not

allow contaminants to spread horizontally or vertically, in which case the amount of soil to be excavated would not significantly change to meet a lower or higher MSC value.

The proposed rulemaking would not require any new legal, accounting or consulting procedures.

(20) Provide a specific estimate of the costs and/or savings to the **local governments** associated with compliance, including any legal, accounting or consulting procedures which may be required. Explain how the dollar estimates were derived.

The amendments are not expected to impact costs or savings for local governments. Although, in some instances, local governments are remediators; however, as with all other types of remediators, this proposed rulemaking is not expected to increase costs or result in significant savings.

Please also see the response to item (19) above.

(21) Provide a specific estimate of the costs and/or savings to the **state government** associated with the implementation of the regulation, including any legal, accounting, or consulting procedures which may be required. Explain how the dollar estimates were derived.

The amendments are not expected to impact costs or savings for state government agencies. Although, in some instances, state government agencies are remediators; however, as with all other types of remediators, this proposed rulemaking is not expected to increase costs or result in significant savings.

Please also see the response to Question 19.

(22) For each of the groups and entities identified in items (19)-(21) above, submit a statement of legal, accounting or consulting procedures and additional reporting, recordkeeping or other paperwork, including copies of forms or reports, which will be required for implementation of the regulation and an explanation of measures which have been taken to minimize these requirements.

The proposed amendments to Chapter 250 would not require any additional recordkeeping or paperwork. No new or revised forms or reports are required.

(22a) Are forms required for implementation of the regulation?

No new or revised forms or reports are required.

(22b) If forms are required for implementation of the regulation, attach copies of the forms here. If your agency uses electronic forms, provide links to each form or a detailed description of the information required to be reported. Failure to attach forms, provide links, or provide a detailed description of the information to be reported will constitute a faulty delivery of the regulation.

No new or revised forms or reports are required.

(23) In the table below, provide an estimate of the fiscal savings and costs associated with implementation and compliance for the regulated community, local government, and state government for the current year and five subsequent years.

	Current FY Year	FY +1 Year	FY +2 Year	FY +3 Year	FY +4 Year	FY +5 Year
SAVINGS:	\$	\$	s	s	\$	s
Regulated Community	\$0	\$0	\$0	\$0	\$0	\$0
Local Government	\$0	\$0	\$0	\$0	\$0	\$0
State Government	\$0	\$0	\$0	\$0	\$0	\$0
Total Savings	\$0	\$0	\$0	\$0	\$0	\$0
COSTS:	\$0	\$0	\$0	\$0	\$0	\$0
Regulated Community	\$0	\$0	\$0	\$0	\$0	\$0
Local Government	\$0	\$0	\$0	\$0	\$0	\$0
State Government	\$0	\$0	\$0	\$0	\$0	\$0
Total Costs	\$0	\$0	\$0	\$0	\$0	\$0
REVENUE LOSSES:	\$0	\$0	\$0	\$0	\$0	\$0
Regulated Community	\$0	\$0	\$0	\$0	\$0	\$0
Local Government	\$0	\$0	\$0	\$0	\$0	\$0
State Government	\$0	\$0	\$0	\$0	\$0	\$0
Total Revenue Losses	\$0	\$0	\$0	\$0	\$0	\$0

(23a) Provide the past three-year expenditure history for programs affected by the regulation.

Program	FY -3 2016-17	FY -2 2017-18	FY -1 2018-19	Current FY 2019-20
Environmental Protection Operations 160-10381	\$86,462,000	\$89,215,000	\$93,190,000	\$84,523,000
Environmental Program Management 161-10382	\$26,885,000	\$29,413,000	\$30,932,000	\$28,420,000

Industrial Land Recycling Fund 689-60080	\$296,000	\$289,000	\$263,000	\$300,000
Hazardous Sites Cleanup Fund 202-20070	\$25,677,000	\$23,750,000	\$22,738,000	\$24,000,000
Storage Tank Fund 210-20073	\$8,654,000	\$4,886,000	\$9,026,000	\$4,484,000

- (24) For any regulation that may have an adverse impact on small businesses (as defined in Section 3 of the Regulatory Review Act, Act 76 of 2012), provide an economic impact statement that includes the following:
 - (a) An identification and estimate of the number of small businesses subject to the regulation.

A majority of the small businesses that DEP can identify as potentially being affected by this proposal are owners of small gasoline stations. In addition to gasoline stations, the types of businesses that may be affected by this proposed rulemaking include fuel distribution facilities, commercial facilities that use toxic or carcinogenic chemicals, manufacturing operations and redevelopers of brownfield sites. There are about approximately 12,000 facilities in this Commonwealth that contain regulated underground and above ground storage tanks, including gasoline stations and fuel distribution and storage facilities. Of those 12,000 facilities, some would include small gasoline station owners. Small businesses would also make up some of the commercial facilities that use toxic or carcinogenic substances. Chapter 250, and this proposed rulemaking, have the potential to impact a broad universe of businesses, persons and organizations, any of which could need to address contamination at any given time. Because of the breadth of reach of Chapter 250, DEP cannot identify further specifics on the types and numbers of small businesses that would potentially be affected by property contamination. Act 2 and Chapter 250 are unique from other statutes and regulations because they do not create permitting or corrective action obligations. Instead, Act 2 and Chapter 250 provide remediators options to address contamination and any associated liability that arises under other statutes. For example, adding PFOS to the Chapter 250 Appendix does not create any liability or obligation related to PFOS. Instead, a person's liability arises under the Clean Stream Law while Act 2 and Chapter 250 provide that person the means to resolve their Clean Streams law liability and to address the contamination. In this way, Act 2 and Chapter 250 do not create new obligations that will impact a particular category of person like a new permitting obligation or corrective action regulation would.

(b) The projected reporting, recordkeeping and other administrative costs required for compliance with the proposed regulation, including the type of professional skills necessary for preparation of the report or record.

The amendments to the Chapter 250 regulations do not add any new procedures, recordkeeping or compliance efforts. The proposed rulemaking would clarify in proposed Section 250.12 (relating to professional seal) that reports submitted as part of the Act 2 process that contain information or analysis that constitutes professional geologic or engineering work under the Engineer, Land Surveyor, and Geologist Registration Law must be sealed by a professional geologist or engineer. Existing sections 250.204(a), 250.312(a) and 250.408(a) (relating to final report; final report; and remedial investigation report) require that "[i]nterpretations of geologic and hydrogeologic data shall be *prepared* by a

professional geologist licensed in this Commonwealth." (emphasis added). The proposed amendment in section 250.12 would moot any concern over what it means to "prepare" one of these reports.

(c) A statement of probable effect on impacted small businesses.

The amendments to the Chapter 250 regulations are not expected to increase costs or provide any significant savings for small businesses. As noted above in response to Question 15, many of the small businesses that may be impacted by this proposed rulemaking are gasoline stations, and for many of these businesses, the costs would be covered by insurance because many of these businesses are required by Section 704(a)(1) of the Storage Tanks and Spill Prevention Act to participate in the Underground Storage Tank Indemnification Fund. This fund provides insurance coverage for the costs to clean up releases from underground storage tanks, regardless of the MSC value used at the site.

Small businesses that handle hazardous substances can use pollution prevention techniques available through various assistance programs to prevent spills that would result in contamination of soil and groundwater. In addition, background and site-specific cleanup standards are available and not affected by the proposed updates to the Statewide health MSCs.

In addition to the Underground Storage Tank Indemnification Fund coverage, the Pennsylvania Department of Community and Economic Development (DCED), primarily through its Industrial Sites Reuse Program, offers many entities that are eligible for brownfield financial assistance, which includes small business, potential grants or loans for the assessment and remediation of soil and groundwater contamination at eligible properties.

(d) A description of any less intrusive or less costly alternative methods of achieving the purpose of the proposed regulation.

The Department is unaware of any less intrusive or less costly alternative methods of achieving the purpose of the proposed rulemaking, which is to update various MSCs based on current scientific information. Background and site-specific cleanup standards are available alternatives to the regulated community and would not be affected by the proposed updates to the Statewide health MSCs in this proposed rulemaking. As discussed above in the responses to Questions 9, 10, and 14, Act 2 requires that the EQB and DEP evaluate data related to current MSCs and promulgate new standards, where necessary. Further, Act 2 requires DEP to incorporate applicable Federal standards, such as EPA's PFOS and PFOA standards (published in 2016), and EPA's HALs.

(25) List any special provisions which have been developed to meet the particular needs of affected groups or persons including, but not limited to, minorities, the elderly, small businesses, and farmers.

The proposed amendments to Chapter 250 do not include special provisions to meet the needs of the groups listed because the proposed amendments are not expected to adversely affect any listed group. Please see the responses to Questions 15, 17, and 24 regarding expected impacts of this proposed rulemaking.

(26) Include a description of any alternative regulatory provisions which have been considered and rejected and a statement that the least burdensome acceptable alternative has been selected.

No alternative regulatory provisions were considered and rejected. The least burdensome acceptable alternatives – which is required by statute and regulation – have been selected. The amendments in this proposed rulemaking are required under Act 2 and the existing Chapter 250 regulations, which require the periodic update of the Statewide health standard. Alternatives to meeting MSCs in Act 2 remediations already exist. They are the background and site-specific cleanup standards that already exist in Chapter 250 and would not be affected by the proposed updates to the Statewide health MSCs in this proposed rulemaking.

- (27) In conducting a regulatory flexibility analysis, explain whether regulatory methods were considered that will minimize any adverse impact on small businesses (as defined in Section 3 of the Regulatory Review Act, Act 76 of 2012), including:
 - a) The establishment of less stringent compliance or reporting requirements for small businesses;
 - b) The establishment of less stringent schedules or deadlines for compliance or reporting requirements for small businesses;
 - c) The consolidation or simplification of compliance or reporting requirements for small businesses;
 - d) The establishment of performing standards for small businesses to replace design or operational standards required in the regulation; and
 - e) The exemption of small businesses from all or any part of the requirements contained in the regulation.

The proposed amendments are expected to have an insignificant impact on small businesses; therefore, no regulatory methods were considered to minimize adverse impacts.

- (a) This proposed rulemaking does not affect any Act 2 compliance requirements. Under Act 2, a remediator may voluntarily select the standard to which to remediate. To complete a remediation, a person must then comply with all relevant technical and administrative requirements. Act 2 establishes the schedules related to reports necessary to comply with those remediation standards. See, for example, the notice and review provisions in sections 302(e), 303(h) and 304(n) of Act 2 (relating to background standard; Statewide health standard; and sight-specific standard). See 35 P.S. §§ 6026.302(e), 6026.303(h), and 6026.304(n). As a result, the Department and the EQB have limited ability to alter schedules, deadlines and reporting requirements. In addition, reporting obligations under Act 2 generally apply only to the Department (in other words, the Department must review and approve a submitted report within a particular timeframe), and not to other parties.
- (b) Please see the response to Question 19(a).
- (c) Please see the response to Question 19(a).
- (d) Chapter 250 does not have design or operation standards. Act 2 does not authorize relaxing MSC values for particular categories of remediators.

- (e) Small businesses, small organizations and small governmental jurisdictions were considered but are not exempt from any provisions of the regulations. Chapter 250 does not take into account the size or nature of a particular entity that may own a contaminated site and the need to address it under Act 2.
- (28) If data is the basis for this regulation, please provide a description of the data; explain in detail how the data was obtained, and how it meets the acceptability standard for empirical, replicable and testable data that is supported by documentation, statistics, reports, studies or research. Please submit data or supporting materials with the regulatory package. If the material exceeds 50 pages, please provide it in a searchable electronic format or provide a list of citations and internet links that, where possible, can be accessed in a searchable format in lieu of the actual material. If other data was considered but not used, please explain why that data was determined not to be acceptable.

Act 2 and the Chapter 250 regulations require the periodic evaluation of the MSCs. The Department bases this evaluation on nationally recognized, peer-reviewed toxicological data, including cancer slope and unit risk factors, reference dose values and reference concentrations published under the Integrated Risk Information System (IRIS), the National Center for Environmental Assessment, Provisional Peer-Reviewed Toxicity Values (PPRTV), the Health Effects Assessment Summary Tables, Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles, and California EPA Cancer Potency Factors and Chronic Reference Exposure Levels.

This information is published by the EPA

(https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm?list_type=alpha) and (https://hhpprty.ornl.gov/), the United States Centers for Disease Control (https://www.atsdr.cdc.gov/mrls/mrllist.asp), and the California Office of Environmental Health Hazard Assessment (https://oehha.ca.gov/chemicals) and is used by all state environmental and health departments in the country for conducting risk assessments for potential exposure to contaminants in soil and groundwater.

Additional information can be accessed at:

EPA's 2018 Drinking Water Standards and Advisory Tables (for PFOA and PFOS toxicity values) EPA's Provisional Peer Reviewed Toxicity Values (PPRTV) Database (for PFBS toxicity values)

(29) Include a schedule for review of the regulation including:

A. The length of the public comment period:

<u>60 days</u>

B. The date or dates on which any public meetings or hearings

will be held:

March 17, 18, and 25, 2020

C. The expected date of delivery of the final-form regulation:

Quarter 1, 2021

D. The expected effective date of the final-form regulation:

Quarter 1, 2021

E. The expected date by which compliance with the final-form

regulation will be required:

Quarter 1, 2021

F. The expected date by which required permits, licenses or other

approvals must be obtained:

N/A

(30) Describe the plan developed for evaluating the continuing effectiveness of the regulations after its implementation.

The Department regularly evaluates the continuing effectiveness of Chapter 250 because 25 Pa. Code § 250.11, require that DEP regularly review new scientific information that relates to the basis of the MSCs and that DEP propose appropriate regulations to the EQB whenever necessary, but not later than 36 months from the effective date of the most recently promulgated regulations. DEP's efforts in this regard include ongoing tracking of remediations completed under the program and annual preparation of a program report.

FACE SHEET FOR FILING DOCUMENTS WITH THE LEGISLATIVE REFERENCE BUREAU

(Pursuant to Commonwealth Documents Law)

JAN 27 2020

Independent Regulatory **Review Commission**

DO NOT WRITE IN THIS SPACE

Copy below is hereby approved as to form and legality. Attorney General

JAN 03 2020

DATE OF APPROVAL

ৈ Check if applicable Copy not approved. Objections attached.

Copy below is hereby certified to be true and correct copy of a document issued, prescribed or promulgated by:

DEPARTMENT OF ENVIRONMENTAL **PROTECTION ENVIRONMENTAL QUALITY BOARD**

(AGENCY)

DOCUMENT/FISCAL NOTE NO. 7-552

DATE OF ADOPTION NOVEMBER 19, 2019

TITLE PATRICK MCDONNELL CHAIRPERSON

EXECUTIVE OFFICER CHAIRPERSON OR SECRETARY

Copy below is hereby approved as to form and legality Executive or Independent Agencies

(Deputy General Counsel) Counsel - Independent Agency)

Check if applicable. No Attorney General Approval or objection within 30 days after submission.

(Strike inapplicable title)

NOTICE OF PROPOSED RULEMAKING

DEPARTMENT OF ENVIRONMENTAL PROTECTION **ENVIRONMENTAL QUALITY BOARD**

Administration of the Land Recycling Program

25 Pa. Code Chapter 250

Control of the contro

Notice of Proposed Rulemaking
Department of Environmental Protection
Environmental Quality Board
(25 Pa. Code, Chapter 250)
(Administration of the Land Recycling Program)

The Environmental Quality Board (Board) proposes to amend 25 Pa. Code, Chapter 250 (relating to administration of the land recycling program). This rulemaking is proposed under 25 Pa. Code § 250.11 (relating to the periodic review of MSCs), which requires that the Department of Environmental Protection (Department) review new scientific information that relates to the basis of the Statewide health standard medium-specific concentrations (MSCs) at least 36 months after the effective date of the most recently promulgated MSCs and to propose to the Board any changes to the MSCs as necessary. In addition to updating the existing MSCs, the proposed rulemaking would add MSCs for three new contaminants, namely Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonate (PFOS), and Perfluorobutane Sulfonate (PFBS). These contaminants are within the Per- and Poly-fluoroalkyl Acid (PFAS) family of compounds for which EPA has published toxicological data. This proposed rulemaking would also clarify several other regulatory requirements.

This proposal was adopted by the Board at its meeting on November 19, 2019.

A. Effective Date

These amendments would go into effect upon publication in the *Pennsylvania Bulletin* as a final rulemaking.

B. Contact Persons

For further information contact Lee McDonnell, Program Manager, Land Recycling Program, P.O. Box 8471, Rachel Carson State Office Building, Harrisburg, PA 17105-8471, (717) 783-3006, or Robert Schena, Assistant Counsel, Bureau of Regulatory Counsel, P.O. Box 8464, Rachel Carson State Office Building, Harrisburg, PA 17105-8464, (717) 783-8072. Information regarding submitting comments on this proposal appears in Section J of this preamble. Persons with a disability may use the AT&T Relay Service by calling 1-800-654-5984 (TDD users) or 1-800-654-5988 (voice users). This proposed rulemaking is available on the Department's website at www.dep.pa.gov (select "Public Participation," then "Environmental Quality Board (EQB)").

C. Statutory Authority

This proposed rulemaking is authorized under sections 104(a) and 303(a) of the Land Recycling and Environmental Remediation Standards Act (Act 2), (35 P.S. §§ 6026.104(a) -6026.303(a)), which direct the Board to adopt and amend periodically by regulation Statewide health standards for regulated substances for each environmental medium, including any health-based standards adopted by the Federal government by regulation or statute, and health advisory levels (HAL), and which direct the Board to promulgate appropriate mathematically valid statistical tests to

define compliance with Act 2, and other regulations as necessary to implement the provisions of Act 2; and section 1920-A of The Administrative Code of 1929 (71 P.S. § 510-20), which authorizes the Board to formulate, adopt and promulgate rules and regulations that are necessary for the proper work of the Department.

D. Background and Purpose

Section 250.11 of the Department regulations requires that the Department review new scientific information that is used to calculate MSCs under the Statewide health standard and propose appropriate changes at least every 36 months following the effective date of the most recently promulgated MSCs. See 25 Pa. Code § 250.11. The Board most recently promulgated MSCs became effective upon publication in the *Pennsylvania Bulletin* on August 27, 2016. See 46 Pa.B. 5655. These proposed changes, based on new information, would protect public health and the environment and would provide the regulated community with clear information regarding the requirements of Act 2 and Chapter 250 related to the remediation of contaminated sites.

In addition to updating Chapter 250 MSCs, this proposed rulemaking would include changes that would add groundwater and soil MSCs for three compounds in the PFAS family – PFBS, PFOS, and PFOA. The proposed standards for these three chemicals are based on data in toxicological studies published by the United States Environmental Protection Agency (EPA). Under Act 2, the Department has directly incorporated EPA's 2016 HALs regarding PFOS and PFOA as groundwater MSCs and has used the data developed by EPA for those HALs to calculate soil MSCs for both compounds. With respect to PFBS, the Department is proposing soil and groundwater standards based on a 2014 EPA Provision Peer-Reviewed Toxicity Value (PPRTV).

Finally, this proposed rulemaking would clarify a number of procedural issues related to the administrative requirements of Act 2. In particular, this proposed rulemaking would clarify requirements for remediators and municipalities regarding public participation and public involvement plans, update requirements for acceptable "practical quantity limits" related to the precision of laboratory testing, update requirements for professional seals from professional geologists or engineers, provide resources to calculate MSCs, and clarify the proper submission of various reports related to the Act 2 Site-Specific Standard.

This proposed rulemaking would impact any person addressing a release of a regulated substance at a property, whether voluntarily or as a result of an order by the Department. This proposed rulemaking would not impact any particular category of person with additional or new regulatory obligations. Under Act 2, a remediator may select the standard to which to remediate. To complete a remediation, the remediator must then comply with all relevant remediation and administrative standards.

As noted above, this rulemaking will not singularly affect one specific industry or person. This proposed rulemaking will impact the owners and operators of storage tank facilities that have had a release of a petroleum or hazardous substance. There are approximately 12,000 storage facilities in the Commonwealth. Some of these facilities are owned and/or operated by small businesses. Because of the broad potential reach of this regulation, it is not possible to identify specifics on the types and numbers of small businesses that could potentially be affected by

property contamination. In addition, Act 2 and Chapter 250 are unique from other statutes and regulations because they do not create permitting or corrective action obligations. Instead, Act 2 and Chapter 250 provide remediators with options to address contamination and any associated liability that arises under other statutes. For example, adding PFOS to the Chapter 250 Appendix does not create any liability or obligation related to PFOS. Instead, a person's liability arises under the Clean Stream Law while Act 2 and Chapter 250 provide that person the means to resolve their Clean Streams law liability and to address the contamination. In this way, Act 2 and Chapter 250 do not create new obligations that will impact a particular category of person like a new permitting obligation or corrective action regulation would.

The soil numeric values represent a proposed decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. These proposed changes reflect updated information related to exposure limitations to these substances and recognize that a higher or lower standard is better representative of those substances' exposure thresholds.

The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. Generally, any cost related to a given site remediation depends in large part on which regulated substances are being remediated and what the specific soil and groundwater conditions are at the site.

The Department worked with the Cleanup Standards Scientific Advisory Board (CSSAB) during the development of this proposed rulemaking. The CSSAB, which was established by Section 105 of Act (35 P.S. § 6026.105), consists of persons representing a cross-section of experience, including engineering, biology, hydrogeology, statistics, medicine, chemistry, toxicology and other related fields. The purpose of the CSSAB is to assist the Department and the Board in developing Statewide health standards, determining the appropriate statistically and scientifically valid procedures and risk factors to be used, and providing other technical advice as needed to implement Act 2. During CSSAB meetings on August 1, 2018, February 13, 2019, June 12, 2019, and October 29, 2019, CSSAB members were given the opportunity to review and provide feedback on draft regulatory amendments to Chapter 250. The Department worked with the CSSAB to resolve concerns and agreed to evaluate additional suggestions during the next review cycle for this rulemaking. Following these presentations and discussions, the CSSAB issued a letter related to the proposed regulatory amendments included in this rulemaking. Specifically, the CSSAB noted concern related to the MSCs for vanadium.

A listing of CSSAB members and minutes of CSSAB meetings are available on the Department's website at www.dep.pa.gov (select "Public Participation," then "Advisory Committees").

E. Summary of Regulatory Requirements

§ 250.1. Definitions

This proposed rulemaking would add a definition for the term "MDL—Method detection limit" because both "method detection limit" and "MDL" are used in Chapter 250 but are not defined. The proposed definition is consistent with EPA's definition in (U.S. EPA Office of Water Publication EPA 821-R-16-006, 2016).

This proposed rulemaking would amend the definition of "volatile compound" to match the description in Section IV, Appendix IV-A.1 of the Department's Land Recycling Program Technical Guidance Manual (TGM) and to match EPA's definition in their OSWER (Office of Solid Waste and Emergency Response) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (OSWER Publication 9200.2-154, 2015). The current definition excludes naphthalene as well as several other semi-volatiles that are considered volatiles in the vapor intrusion section of the TGM. The Department's TGM is available at https://www.dep.pa.gov/Business/Land/LandRecycling/Standards-Guidance-Procedures/Guidance-Technical-Tools/Pages/Technical-Guidance-Manual.aspx.

§ 250.4. Limits related to PQLs.

Proposed amendments to this section would update the references and procedures for determining the practical quantitation limit (PQL) and would remove confusing and outdated language. Improvements in laboratory instrument technology and the removal of PQLs and estimated quantitation limits (EQLs) from revised laboratory methods resulted in the need to update this section.

§ 250.6. Public participation.

The proposed amendments to § 250.6(c) would clarify that if a public involvement plan (PIP) has been initiated, the public has a right to be involved in the development and review of the remedial investigation report, risk assessment report, cleanup plan and final report consistent with Section 304(o) of Act 2 (35 P.S. § 6026.304(o)) (relating to Community involvement) and outlines the necessary measures to involve the public.

The proposed amendments to § 250.6(d) would help to ensure that the Department and the municipality requesting the PIP are notified of the submission of the PIP and receive copies of the PIP. These proposed amendments necessitate the removal of §§ 250.6(d)(1) and (2) because it no longer makes sense to include them in (d). These subsections were also removed because they are already discussed in Chapter 250 in the final report requirements section for the SSS (§ 250.411(e)) and remediation requirements section for SIA sites (§ 250.503(f)). Finally, these two subsections were removed because the current Chapter 250 regulations require that the public involvement plan be submitted with the remedial investigation report or baseline environmental report. The proposed change is necessary because DEP needs notice of PIPs in advance of receipt of those reports.

§ 250.10. Measurement of regulated substances in media.

The proposed amendments to § 250.10(d) would change the references from the Groundwater Monitoring Guidance Manual to reference to the most current version of Appendix A (relating to groundwater monitoring guidance) of the TGM or an alternative method that appropriately measures regulated substances in groundwater.

§ 250.12. Professional seal.

This proposed new section mirrors language from § 245.314 (relating to professional seals) of the storage tank regulations, requiring that reports submitted to the Department which include professional geologic or engineering work be sealed by a professional geologist or engineer.

§ 250.304. MSCs for groundwater.

Under subsection (c), the EPA publication number has been revised.

Under subsection (g), this proposed rulemaking would list additional sources of aqueous solubility information to support the new compounds proposed to be added to the MSC tables in this rulemaking. Thus, the following aqueous solubility sources are proposed be added to § 250.304(g):

- 19. ATSDR (Agency for Toxic Substances and Disease Registry). 2015. *Toxicological Profile for Perfluoroalkyls. Draft for Public Comment*. Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Accessed May 2016. http://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf.
- 20. Hekster, F.M., R.W. Laane, and P. de Voogt. 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology 179:99–121.
- 21. HSDB (Hazardous Substances Data Bank). 2012. U.S. National Library of Medicine, Bethesda, MD. Accessed May 2016. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.
- 22. Kauck, E.A., and A.R. Diesslin. 1951. Some properties of perfluorocarboxylic acids. Industrial & Engineering Chemistry Research 43(10):2332–2334.
- 23. SRC (Syracuse Research Corporation). 2016. PHYSPROP Database. Accessed May 2016. http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.
- 24. OECD (Organisation for Economic Co-operation and Development). 2002. *Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salts*. ENV/JM/RD (2002) 17/FINAL. Report of the Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Co-operation on Existing Chemicals, Paris, November 21, 2002.

§ 250,305. MSCs for soil.

Under subsection (c), a minor correction to a cross-reference is proposed.

The proposed amendments to § 250.305(g) would alleviate confusion as to the need to evaluate the soil-to-groundwater pathway for compounds that have secondary maximum contaminant levels (SMCLs) and either a primary MCL or a HAL. These proposed changes would also allow for the determination of soil MSC values for substances with SMCLs but no toxicological information in Appendix A, Table 5B, of Chapter 250. This determination would be based on the physical capacity of the soil to contain a regulated substance as described in § 250.305(b). This proposed change, along with other proposed changes to subsection (g), would result in the ability of remediators to determine soil MSCs for chloride and sulfate that also incorporate impacts to ecological receptors as described in § 250.311(a) through (f) (relating to evaluation of ecological receptors).

§ 250.306. Ingestion numeric values.

Due to new information published by EPA in Exposure Factors Handbook 2011 Edition, EPA/600/R-090/052F, the residential groundwater ingestion rate would increase from 2 liters a day (L/day) to 2.4 L/day. This proposed amendment would result in additional changes to other exposure factors listed in the table and footnotes in § 250.306(d). Formatting errors in the table footnotes in this section would also be corrected. Some of the equations in the footnotes contain brackets that should not be confused with brackets used to delineate changes proposed in the rulemaking. Bolded text within bolded brackets represents text to be removed while unbolded brackets encompass existing text not proposed for removal.

Proposed amendments to § 250.306(e) would update the models used to calculate blood lead levels that are applied to the corresponding lead numeric value calculations. The new model references would also be updated in this subsection.

§ 250.307. Inhalation numeric values.

A proposed amendment to the equation in § 250.307(g)(1) would add a "x 24 hr/day" multiplier to the numerator. This component was inadvertently omitted from this equation in the previous rulemaking.

§ 250.308. Soil to groundwater pathway numeric values.

In section § 250.308(a)(2)(ii), the word "standard" would be replaced with "generic numeric value" to avoid the implication that the 1/10th value is always the soil MSC for saturated soil and to avoid the implication that the comparison process should be bypassed.

§ 250.311. Evaluation of ecological receptors.

Amendments to § 250.311(b) are proposed to directly reference the proposed changes to § 250.305(g) and to reference the physical capacity of the soil to contain a regulated substance as described in § 250.305(b).

§ 250.402. Human health and environmental protection goals.

Proposed amendments to § 250.402(d) would resolve confusion and ensure the correct application of 250.311(e) to protect ecological receptors under the site-specific standard.

A proposed amendment to § 250.402(d)(3) would correct and replace the reference to § 230.311(f) with § 250.311(f).

§ 250.404. Pathway identification and elimination.

Under subsection (a), proposing to add the words "Department or" to allow for the use of Department guidance in identifying exposure pathways.

§ 250.409. Risk assessment report.

Proposed amendments to § 250.409(1) would clarify that an approved remedial investigation report is needed in advance of submitting an approvable risk assessment report when the reports are submitted separately. This proposed amendment is part of a clarification regarding the appropriate sequence of reports submitted under Subchapter D (relating to the site-specific standard), including a proposed new section for "combined reports", § 250.412, described below.

§ 250.410. Cleanup plan.

A new proposed § 250.410(d) would remove any ambiguity regarding the need for a cleanup plan in situations in which a remedy is already present. The current language in § 250.410(d) would be moved into a newly created section § 250.410(e).

§ 250.412. Combined reports.

This newly proposed section would explain that prior approval of a remedial investigation report is not necessary when combined with either a risk assessment report or a cleanup plan. This proposed section is necessary as a result of the changes made to § 250.410 concerning cleanup plans.

§ 250.503. Remediation requirements.

The proposed amendments to § 250.503(e) would clarify that a revised baseline environmental report, not just a new remediation plan, may need to be submitted when land use changes from non-residential to residential at a special industrial area (SIA) site.

§ 250.603. Exposure factors for site-specific standards.

The proposed amendment to § 250.603(a) would update the citation of the 1992 version of EPA's Final Guidelines for Exposure Assessment to EPA's 2011 Exposure Factors Handbook.

§ 250.605. Sources of toxicity information.

The proposed updates to § 250.605(a)(3) would add EPA's Office of Pesticide Programs Human Health Benchmarks for Pesticides and EPA's Provisional Peer-Reviewed Toxicity Value Appendix databases to the toxicity value source hierarchy.

§ 250.707. Statistical tests.

The term "Statewide health standard" would be changed to "MSC" in the proposed amendment to § 250.707(b)(1)(ii) for clarification.

A new clause (D) would be added to § 250.707(b)(1)(iii) clarifying when or whether a vapor intrusion analysis is necessary for sites with small petroleum releases where full site characterization is not performed.

Appendix A, Tables 1-7

Proposed amendments to the "Medium-Specific Concentrations" tables would update the MSCs for certain regulated substances. Updates to footnotes would be necessary to help explain some of the changes to the MSCs. Numeric values would be calculated for several new substances, including PFOS, PFOA and PFBS in groundwater and soil, and total polychlorinated biphenyls in soil. Ingestion-based numeric values would all decrease slightly due to the proposed increase in water ingestion rate under section § 250.306(d) from 2 L/day to 2.4 L/day. Other proposed numeric value changes would mostly be attributed to updates in toxicity values in Tables 5A and 5B. However, proposed corrections to the numeric value calculation process would also cause some numeric values to change.

The proposed update to the definition of a "volatile compound" would cause some of the values to change because the new definition would include the consideration of Henry's law constant and molecular weight. Additionally, some of the numeric values changes would be due to rounding adjustments. When the Department calculates the numeric MSC values for inclusion in Chapter 250, some values are rounded during one of the early calculation steps instead of at the end of the calculation. To be consistent, the rounding procedure would now be changed so that all rounding occurs at the final value calculation step. Elimination of the rounding of transfer factors would also cause changes to the numeric values. Transfer factors used for the calculation of inhalation numeric values from soil are calculated and listed in Table 5A. The transfer factors currently in Table 5A were rounded inconsistently. To be consistent with the other proposed rounding corrections, these values would no longer be rounded because they are calculated and used in the early stages of the numeric value calculation process.

In the proposed amendments, information would be updated on the "Threshold of Regulation Compounds" table (Table 6) by the removal of compounds that would have numeric values calculated on other tables.

Proposed amendments to the "Default Values for Calculating MSCs for Lead" table (Table 7) would update the input parameters for use in the Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children for residential exposure. Proposed amendments for non-residential exposure would update the model input parameters for the Adult Lead Model (ALM). References for both models would also be updated. These proposed amendments would result in updates to the lead residential and nonresidential direct contact values provided in Table 4A.

F. Benefits, Costs and Compliance

Benefits

In enacting Act 2, the General Assembly found and declared among its policy goals that "[p]ublic health and environmental hazards cannot be eliminated without clear, predictable environmental remediation standards and a process for developing those standards," that "[a]ny remediation standards adopted by this Commonwealth must provide for the protection of public health and the environment," and that "[c]leanup plans should be based on actual risk that contamination on the site may pose to public health and the environment, taking into account its current and future use and the degree to which contamination can spread offsite and expose the public or the environment to risk." See 35 P.S. 6026.102 (relating to declaration of policy).

To effectuate this, the General Assembly authorized the Board and the Department to develop standards and methods to effectuate those goals. 35 P.S. §§ 6026.104 and 6026.303. The Department's regulatory structure, as authorized under Act 2 and as implemented by Chapter 250, provides those important benefits articulated in the General Assembly's declaration of policy.

The amendments to the MSCs in this proposed rulemaking would serve both the public and the regulated community because they would provide MSCs based on the most up-to-date health and scientific information for substances that cause cancer or have other toxic effects on human health. The Board first published Chapter 250 regulations in 1997. 27 Pa.B. 4181. (August 16, 1997). The General Assembly recognized, in section 104(a) of Act 2 (35 P.S. 6026.104(a)), that these standards must be updated over time as better science becomes available and as the need for clarification or enhancement of the program becomes apparent.

Potential contamination of soil and groundwater from accidental spills and unlawful disposal can impact almost any resident of this Commonwealth. Many of the chemical substances addressed in this proposed rulemaking are systemic toxicants or carcinogens as defined under Act 2 and, in some cases, are widespread in use. Examples of substances that contain toxic or carcinogenic properties include gasoline and other petroleum products, solvents, elements used in the manufacture of metals and alloys, pesticides, and some dielectric fluids previously contained in transformers and capacitors. Releases of regulated substances not only pose a threat to the environment, but also could affect the health of the general public if inhaled or ingested. New research on many of these substances is ongoing and provides the basis for protection of the residents of this Commonwealth through site cleanup requirements.

Although most of the changes to soil numeric values in this proposed rulemaking would decrease the numeric values, 17% of the values would increase. Increases in values reflect updated information related to exposure limitations to the substances and acknowledge that a higher standard is better representative of those substances' exposure threshold.

An additional benefit of this proposed rulemaking would be the promulgation of soil and groundwater MSCs for PFOS, PFOA and PFBS. Establishing these MSCs would allow remediators to address groundwater and soil contamination and thereby lessen public exposure to the contaminants. This will also benefit remediators wishing to remediate contaminated sites, who tend to be owners, operators or purchasers – or their contractors – of properties and facilities including, or at or near, military bases, municipalities and other locations that used or stored fire-fighting foam. EPA reports that contamination from these chemicals has also been associated with manufacturing textiles, food packaging, personal care products, and other materials such as cookware that are resistant to water, grease and stains. See Fact Sheet, EPA, PFOA & PFOS Drinking Water Health Advisories (November 2016) (available at https://www.epa.gov/sites/production/files/2016-06/documents/drinkingwaterhealthadvisories pfoa pfos updated 5.31.16.pdf).

Finally, remediators would benefit from the proposed amendments that clarify many of the administrative elements of Act 2, making for a more efficient and streamlined Act 2 remediation process.

The benefits of this proposed rulemaking are difficult to quantify because, unlike other statutory or permitting schemes, Act 2 does not prevent contamination but instead provides remediators with a variety of options to addresses sites that have already been contaminated. In that sense, the proposed rulemaking, consistent with Act 2, benefits the public because it can lead to more efficient and more expedient remediation and reuse of contaminated areas.

Compliance Costs

Financially and economically, the Department believes that any potential impact to the regulated community would be insignificant. Under this proposal, the MSC values for many regulated substances are being amended for a variety of reasons. The two most common reasons for amendments are federal agency (including EPA and U.S. Department of Health Agency for Toxic Substances and Disease Registry) changes in toxicity values that are used in calculating MSC and a change in the EPA's underlying assumption of a person's average daily consumption of water from 2L/day to 2.4L/day. The soil numeric values represent a decrease for approximately 83% of the values and an increase for 17% of the values. For groundwater, the proposed changes reflect a decrease for approximately 92% of the values and an increase in approximately 8% of the values. Lowering the values may indicate a more stringent cleanup is required at a site and increasing the values may indicate a less stringent cleanup is required at a site. The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. The Department does not expect that the proposed amendments would impact the number of remediations voluntarily completed or the number that must be completed as a result of Department enforcement actions.

The proposed updates to Statewide health standard MSCs would not affect the cleanup options available to remediators under other cleanup standards. Persons conducting remediation under Act 2 may choose from three different cleanup standards: background, Statewide health or site-specific.

The Department does not expect that this proposed rulemaking, as it relates to new MSCs for PFOA, PFOS, and PFBS, would create any additional costs. Act 2 does not create liability for, or the obligation to, address contamination for these and other chemicals. Instead, that obligation comes from other environmental statutes, including the Clean Streams Law (35 P.S. §§ 691.1-691.1001) and the Solid Waste Management Act (35 P.S. §§ 6018.101-6018.1003). Act 2 provides remediators with options to remediate contamination. Having these new MSCs would allow remediators to address PFOS, PFOA and PFBS groundwater and soil contamination. This would benefit the public by lessening public exposure to these contaminants.

Compliance Assistance Plan

The Land Recycling Program would disseminate information concerning these updates using the Department website and e-mails to environmental consultants involved in the program.

Paperwork Requirements

This proposed rulemaking would not result in any additional forms or reports, beyond those that are already required by Act 2 and Chapter 250.

G. Pollution Prevention

The Federal Pollution Prevention Act of 1990 (42 U.S.C.A. §§ 13101—13109) established a National policy that promotes pollution prevention as the preferred means for achieving state environmental protection goals. The Department encourages pollution prevention, which is the reduction or elimination of pollution at its source, through the substitution of environmentally friendly materials, more efficient use of raw materials and the incorporation of energy efficiency strategies. Pollution prevention practices can provide greater environmental protection with greater efficiency because they can result in significant cost savings to facilities that permanently achieve or move beyond compliance.

Act 2 encourages cleanup plans that have as a goal remedies which treat, destroy or remove regulated substances whenever technically and economically feasible. This proposed rulemaking would provide the necessary statewide health standard MSCs for remediators to remove contamination or eliminate exposure, where appropriate. In particular, this proposed rulemaking reflects the most up-to-date science, especially as it relates to the characterization and removal of contamination that exceeds Act 2 MSCs. During the remediation of a contaminated site, potential sources of pollution are often removed to attain the Act 2 standards, thus eliminating or minimizing the potential for continued migration of the sources of pollution to other areas.

H. Sunset Review

The Board is not establishing a sunset date for this proposed regulation because it is needed for the Department to carry out its statutory authority.

I. Regulatory Review

Under Section 5(a) of the Regulatory Review Act (71 P.S. § 745.5(a)), on January 27, 2020, the Department submitted a copy of these proposed amendments to the Independent Regulatory Review Commission (IRRC) and the Chairpersons of the House and Senate Environmental Resources and Energy Committees. In addition to submitting the proposed amendments, the Department has provided IRRC and the Committees with a copy of a detailed regulatory analysis form prepared by the department. A copy of this material is available to the public upon request.

Under section 5(g) of the Regulatory Review Act, IRRC may convey any comments, recommendations or objections to the proposed regulations within 30 days of the close of the public comment period. The comments, recommendations or objections shall specify the regulatory review criteria that have not been met. The Act specifies detailed procedures for review of these issues by the Department, the General Assembly and the Governor prior to final publication of the regulations.

J. Public Comments

Interested persons are invited to submit written comments, suggestions, support or objections regarding this proposed rulemaking to the Board. Comments, suggestions, support or objections must be received by the Board by April 14, 2020.

Comments may be submitted to the Board online, by e-mail, by mail or express mail as follows. Comments submitted by facsimile will not be accepted.

Comments may be submitted to the Board by accessing eComment at http://www.ahs.dep.pa.gov/eComment.

Comments may be submitted to the Board by e-mail at <u>RegComments@pa.gov</u>. A subject heading of this proposed rulemaking and a return name and address must be included in each transmission.

If an acknowledgement of comments submitted online or by e-mail is not received by the sender within two working days, the comments should be retransmitted to the Board to ensure receipt.

Written comments should be mailed to the Environmental Quality Board, P.O. Box 8477, Harrisburg, PA 17105-8477. Express mail should be sent to the Environmental Quality Board, Rachel Carson State Office Building, 16th Floor, 400 Market Street, Harrisburg, PA 17101-2301.

K. Public Hearings

The Board will hold 3 public hearings for the purpose of accepting comments on this proposed rulemaking. The hearings will be held at 6 p.m. on the following dates:

March 17, 2020

Department of Environmental Protection

Southcentral Regional Office

Susquehanna Conference Rooms A&B

909 Elmerton Avenue Harrisburg, PA 17110

March 18, 2020

Department of Environmental Protection

Southwest Regional Office

Waterfront Conference Rooms A&B

400 Waterfront Drive Pittsburgh, PA 15222

March 25, 2020

Warminster Township Library

1076 Emma Lane

Warminster, PA 18974

Persons wishing to present testimony at a hearing are requested to contact the Environmental Quality Board, P.O. Box 8477, Harrisburg, PA 17105-8477, (717) 787-4526 at least 1 week in advance of the hearing to reserve a time to present testimony. Oral testimony is limited to 5 minutes for each witness. Witnesses are requested to submit three written copies of their oral testimony to the hearing chairperson at the hearing. Organizations are limited to designating one witness to present testimony on their behalf at each hearing.

Persons in need of accommodations as provided for in the Americans with Disabilities Act of 1990 should contact the Board at (717) 787-4526 or through the Pennsylvania AT&T Relay Service at (800) 654-5984 (TDD) or (800) 654-5988 (voice users) to discuss how the Board may accommodate their needs

Patrick McDonnell Chairperson

	(
			5	

ANNEX A

TITLE 25. ENVIRONMENTAL PROTECTION PART I. DEPARTMENT OF ENVIRONMENTAL PROTECTION SUBPART D. ENVIRONMENTAL HEALTH AND SAFETY ARTICLE VI. GENERAL HEALTH AND SAFETY CHAPTER 250. ADMINISTRATION OF LAND RECYCLING PROGRAM

Subchapter A. GENERAL PROVISIONS

§ 250.1. Definitions.

* * * * *

MCL—Maximum contaminant level.

MDL – Method detection limit - The instrument-specific minimum measured concentration of a substance that can be reported with 99% confidence to be distinguishable from the method blank result.

MSC—Medium-specific concentration.

* * * * *

TF—Transfer factor.

Volatile compound – A chemical compound with <u>either</u> a boiling point less than 200° centigrade at 1 atmosphere <u>or a Henry's law constant greater than or equal to 1 x 10⁻⁵ atm-m³/mol and a molecular weight less than 200 g/mol, where:</u>

atm = standard atmosphere

m³ = cubic meter

mol = mole

g = gram

g/mol = molar mass

§ 250.4. Limits related to PQLs.

(a) The PQLs shall be selected from the PQLs or EQLs specified by the EPA [as EQLs] in the most current version of [the] EPA's [RCRA Manual SW-846 (U. S. EPA, 1990. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Third Edition. Office of Solid Waste and Emergency Response) for soil listed as "low level soil" and for

groundwater listed as "groundwater" in accordance with the following: drinking water or solid waste analytical methods.

- [(1) For inorganic compounds, the PQLs under this chapter shall be the values listed for methods associated with analysis by Inductively Coupled Plasma (ICP) with the following exceptions:
 - (i) For lead, cadmium, arsenic and selenium, values listed for the atomic absorption graphite furnace methods for water shall be used.
 - (ii) Mercury shall be the value listed for the cold vapor method.
- (2) For organic compounds, the PQLs shall be the EQLs listed for the GC/Mass spec methods—for example, Method 8240 for volatile organic compounds.
- (b) If the PQL selected under subsection (a) is higher than the MCL or HAL for an organic regulated substance in groundwater, the PQLs shall be derived from the analytical methodologies [published under the drinking water program in the most current version of Methods for the Determination of Organic Compounds in Drinking Water (U. S. EPA, 1988, Environmental Monitoring Systems Laboratory, EPA/600/4-88/039) If a PQL determined under this subsection is not below a HAL, the methodologies in subsection (c)(1) or (2) shall be used unless those quantitation limits are higher than the PQL determined under this subsection.]
- [(c)] (b) For regulated substances when <u>PQLs or</u> EQLs set by the EPA <u>exceed an MCL or</u> <u>HAL or</u> have a health risk that is greater (less protective) than the risk levels set in sections 303(c) and 304(b) and (c) of the act (35 P. S. § 6026.303(c) and 6026.304(b) and (c)) [or] <u>and</u> for substances when no EQL has been established by the EPA, the [limits related to the] PQL shall be [the quantitation limits] established by the methodologies in paragraph (1) or (2).
 - (1) A level set by multiplying 3.18 by the published method detection limit (MDL) of the most recently approved EPA methodology.
 - (2) A level [representing the lowest calibration point that can consistently be determined to have a percent relative standard deviation (%RSD) of less than 30% or correlation coefficient of greater than 0.995 using reagent water.] set by multiplying 3.18 by the instrument-specific MDL. If multiple instruments are used, then the PQL is set by averaging the instrument-specific MDLs and multiplying that value by 3.18.
- [(d)] (c) For regulated substances which have no limits related to PQLs identified in subsection [(c)] (b)(1) or (2), a person shall demonstrate attainment under the site-specific standard or the background standard.
- [(e)] (d) When a minimum threshold MSC is used as a Statewide health standard, the minimum threshold MSC is the Statewide health standard regardless of whether it is higher or lower than a quantitation limit established by this section.

[(f)] (e) Nothing in this section restricts the selection of valid and generally accepted methods to be used to analyze samples of environmental media.

§ 250.6. Public participation.

* * * * *

- (c) If a public involvement plan has been initiated, the person proposing remediation shall, at a minimum, [provide] include the following three measures in the plan to involve the public in the development and review of the remedial investigation report, risk assessment report, cleanup plan and final report:
 - (1) <u>Provide</u> [P] <u>public</u> access at convenient locations for document review.
 - (2) Designate[ion of] a single contact person to address questions from the community.
- (3) <u>Use [A]a</u> location near the remediation site for any public hearings and meetings that may be part of the public involvement plan.
- (d) If a public involvement plan has been requested, [it shall be submitted with one of the following:] the person proposing the remediation shall notify the Department and submit the plan to the municipality and the Department prior to its implementation.
 - [(1) A remedial investigation report under a site-specific remediation.
 - (2) A baseline environmental report under an SIA cleanup.]
- § 250.10. Measurement of regulated substances in media.

* * * * *

(d) For groundwater where monitoring is being performed at a drinking water well, samples for metals analysis shall be field acidified and unfiltered in accordance with the most current version of [Groundwater Monitoring Guidance Manual] Land Recycling Program Technical Guidance Manual, Appendix A: Groundwater Monitoring Guidance, Department of Environmental Protection, [3610-BK-DEP1973] document number 261-0300-101, or in accordance with an alternative sampling method that accurately measures regulated substances in groundwater.

* * * * *

§ 250.12. Professional seal.

Reports submitted to satisfy this subchapter containing information or analysis that constitutes professional geologic or engineering work as defined by the Engineer, Land Surveyor and Geologist Registration Law (63 P.S. § § 148—158.2) must be sealed by a professional geologist or engineer who is in compliance with that statute.

Subchapter C. STATEWIDE HEALTH STANDARDS

* * * * *

§ 250.304. MSCs for groundwater.

* * * * *

(c) The MSCs for regulated substances contained in groundwater in aquifers used or currently planned to be used for drinking water or for agricultural purposes are the MCLs as established by the Department or the EPA in § 109.202 (relating to State MCLs, MRDLs and treatment technique requirements). For regulated substances where no MCL has been established, the MSCs are the Lifetime Health Advisory Levels (HAL) set forth in Drinking Water Standards and Health Advisories (DWSHA), EPA Office of Water Publication No. EPA [822-S-12-001 (April 2012]822-F-18-001 (March 2018 or as revised), except for substances designated in the DWSHA with cancer descriptor (L) "Likely to be carcinogenic to humans" or (L/N) "Likely to be carcinogenic above a specific dose but not likely to be carcinogenic below that dose because a key event in tumor formation does not occur below that dose." New or revised MCLs or HALs promulgated by the Department or the EPA shall become effective immediately for any demonstration of attainment completed after the date the new or revised MCLs or HALs become effective.

* * * * *

(g) The references referred to in subsection (f) are:

* * * * *

- (19) ATSDR (Agency for Toxic Substances and Disease Registry). 2015. Toxicological Profile for Perfluoroalkyls. Draft for Public Comment. Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Accessed May 2016. http://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf.
- (20) Hekster, F.M., R.W. Laane, and P. de Voogt. 2003. Environmental and toxicity effects of perfluoroalkylated substances. Reviews of Environmental Contamination and Toxicology 179:99–121.

- (21) HSDB (Hazardous Substances Data Bank). 2012. U.S. National Library of Medicine, Bethesda, MD. Accessed May 2016. http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen?HSDB.
- (22) Kauck, E.A., and A.R. Diesslin. 1951. Some properties of perfluorocarboxylic acids. Industrial & Engineering Chemistry Research 43(10):2332–2334.
- (23) SRC (Syracuse Research Corporation). 2016. PHYSPROP Database. Accessed May 2016. http://www.srcinc.com/what-we-do/environmental/scientific-databases.html.
- (24) OECD (Organisation for Economic Co-operation and Development). 2002. Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salts. ENV/JM/RD (2002) 17/FINAL. Report of the Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Co-operation on Existing Chemicals, Paris, November 21, 2002.

§ 250.305. MSCs for soil.

* * * * *

- (c) For the residential standard, the MSC for regulated substances contained in soil is one of the following:
 - (1) The lowest of the following:
 - (i) The ingestion numeric value throughout the soil column to a depth of up to 15 feet from the existing ground surface as determined by the methodology in § 250.306 (relating to ingestion numeric values), using the appropriate default residential exposure assumptions contained in § 250.306[(e)](d).

* * * * *

(g) A person conducting a remediation of soils contaminated with [a] <u>one or more</u> substances having a secondary MCL, <u>but no toxicological properties listed in Appendix A</u>, <u>Table 5B</u>, will not be required to comply with <u>either the direct contact pathway or</u> the soil-togroundwater pathway requirements for those substances [to protect groundwater in aquifers for drinking water]. <u>The substances shall be subject to the requirements of § 250.311(a) through (f) (relating to evaluation of ecological receptors) with respect to evaluation of ecological receptors.</u>

§ 250.306. Ingestion numeric values.

* * * * *

(d) The default exposure assumptions used to calculate the ingestion numeric values are as follows:

		Residential	ential	Nonrovidential
	Тети	Systemic ¹	Carcinogens ^{2,6}	(Onsite Worker)
ТНО	Target Hazard Quotient	1	N/A	1
RfD。	Oral Reference Dose (mg/kg-day)	Chemical-specific	N/A	Chemical-specific
BW	Body Weight (kg) Soil Groundwater	15	N/A	80
ATnc	Averaging Time for systemic toxicants (yr) Soil Groundwater	6 30	N/A N/A	25
Abs	Absorption (unitless) ³	1	фала	1
H	Exposure Frequency (d/yr) Soil Groundwater	250 350	250 350	180 250
ED	Exposure Duration (yr) Soil Groundwater	6 30	N/A N/A	25 25
IngR	Ingestion Rate Soil (mg/day) GW (L/day)	100 [2] <u>2.4</u>	N/A N/A	50 [1] <u>1.2</u>

i i	17	Resia	Residential	Nonresidential
	Term	Systemic ¹	Carcinogens ^{2,6}	(Onsite Worker)
CF	Conversion Factor Soil (kg/mg) GW (unitless)	1 × 10-6 1	1 × 10.6	1 × 10-6
TR	Target Risk	N/A	1 × 10-5	1 × 10 ⁻⁵
CSF.	Oral Cancer Slope Factor (mg/kg-day)"	N/A	Chemical-specific	Chemical-specific
ATc	Averaging Time for carcinogens (yr)	N/A	70	70
IFadj⁴	Ingestion Factor Soil (mg-yr/kg-day) GW (L-yr/kg day)	N/A	55 [1] <u>1.2</u>	15.6 [0.3] <u>0.38</u>
AlFadj³	Combined Age-Dependent Adjustment Factor and Ingestion Factor	N/A		N/A
	Soil (mg-yr/kg-day) GW (L-yr/kg-day)		241 [3.23] <u>3.45</u>	
$CSFo_k$	TCE oral cancer slope factor for kidney cancer (mg/kg/day) ⁻¹	0	9.3 × 10 ⁻³	
CSFo	TCE oral cancer slope factor for non-Hodgkin lymphoma and liver cancer (mg/kg/day) ⁻¹		3.7×10^{-2}	

Notes:

⁴The Ingestion Factor for the residential scenario is calculated using the equation If₁₈₄₀₁₁₈₄₁ = EDc x IR₂/BW_c + ED_a x IR₃/B[w]W_a, where ED_c = 6 yr, IR_c = 100 mg/day for soils and 1 L/day for groundwater, BW_c = 15 kg, ED_a = 24 yr, IR_a = 50 mg/day for soils and [2] 2.4 L/day for groundwater, and BW_a = 80 kg. The ingestion factor for the nonresidential scenario is calculated using the equation If₁₈₄₀₁₁₈₄₁ = ED x IR/BW, where ED = 25 yr, IR = 50 mg/day for soils and [1] 1.2 L/day for groundwater, and BW = 80 kg.

⁵ The Combined Age-Dependent Adjustment Factor and Ingestion Factor (AIFadj) for the residential scenario is calculated using the equation AIFadj = [(ADAF₁₂ x ED₂) + (ADAF₂₋₆ x ED₂₋₆)] x IR[e]₂ / BW[e]₂ / BW[e]₃ + [(ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀)] x IR[e]₃ / BW[e]₄ + [(ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀)] x IR[e]₄ / BW[e]₅ + [(ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀)] x IR[e]₄ / BW[e]₅ + [(ADAF₁₀ x ED₁₀ + (ADAF₁₀ x ED₁₀

yr, $ADAF_{2:6} = 3$, $ED_{2:6} = 4$ yr, $IR[c]_s = 100mg/day$ for soils and 1 L/day for groundwater, $BW[c]_s = 15$ kg, $ADAF_{[1]_{5:16}} = 3$, $ED_{[1]_{5:16}} = 10$ yr, $ADAF_{:16} = 1$, $ED_{:16} =$

* * * * *

(e) The residential ingestion numeric value for lead in soil was developed using the [Uptake Biokinetic (UBK) Model for Lead (version 0.4) Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children, Windows® version (IEUBKwin v1.1 build 11) 32-bit version developed by the EPA (U.S. Environmental Protection Agency. ([1990] February 2010)) [Uptake Biokinetic (UBK) Model for Lead (version 0.4). U.S. EPA/ECAO. August 1990, in lieu of the algorithms presented in subsections (a) and (b). Default input values are identified in Appendix A, Table 7. Because the **IEUBK** model is applicable only to children, the nonresidential ingestion numeric value was calculated [according to the method developed by the Society for Environmental Geochemistry and Health (Wixson, B. G. (1991)). The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil. Trace Substances in Environmental Health. (11-20), using the following equations:

$$S = \frac{1000\left[\left(\frac{T}{G^n}\right) - B\right]}{\delta}$$

using EPA's Adult Lead Methodology (ALM) in accordance with the guidance, exposure factors, equations, and spreadsheets provided in EPA's Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil (EPA-540-R-03-001, OSWER Dir #9285.7-54, January 2003), OLEM Directive 9285.6-56 "Update to the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters" (May 2017) and the associated June 14, 2017, version of the Calculations of Preliminary Remediation Goals (PRGs) for Soil in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee spreadsheets. Table 7 identifies each of the variables [in this equation] used to calculate the nonresidential ingestion numeric value for lead.

§ 250.307. Inhalation numeric values.

(g) For a regulated substance which is a carcinogen and is a volatile compound, the numeric value for the inhalation of volatiles from groundwater shall be calculated by using the

appropriate residential or nonresidential exposure assumptions from subsection (h) according to the following equations:

(1) For regulated substances not identified as a mutagen in § 250.301(b):

$$MSC = \frac{TR \times AT_c \times 365 \text{ days/year } \times 24 \text{ hr/day}}{IUR \times ET \times EF \times ED \times TF \times CF}$$

§ 250.308. Soil to groundwater pathway numeric values.

(a) A person may use the soil-to-groundwater pathway numeric values listed in Appendix A, Tables 3B and 4B, as developed using the methods contained in paragraph (1), (2) or (4), may use a concentration in soil at the site which does not produce a leachate in excess of the MSC for groundwater contained in Appendix A, Tables 1 and 2, when subjected to the Synthetic Precipitation Leaching Procedure (Method 1312 of SW-846, Test Methods for Evaluating Solid Waste, promulgated by the U. S. EPA), or may use the soil-to-groundwater pathway soil buffer criteria in subsection (b) or may use the soil-to-groundwater pathway equivalency demonstration in subsection (d).

* * * * *

(2) For organic compounds, a generic value determined not to produce a concentration in groundwater in the aquifer in excess of the MSC for groundwater as calculated by the equation in paragraph (3).

* * * * *

(ii) For soil in the zone of groundwater saturation, the [standard] generic numeric value is 1/10th of the generic value calculated by the equation in paragraph (3).

* * * * *

§ 250.311. Evaluation of ecological receptors.

* * * * *

(b) For purposes of determining impacts on ecological receptors, no additional evaluation is required if the remediation attains a level equal to 1/10th of the value in Appendix A, Tables 3 and 4 or, for substances identified in § 250.305(g), 1/10th of the physical limitation identified in § 250.305(b), except for constituents of potential ecological concern identified in Table 8, or if the criteria in paragraph (1), (2) or (3) are met. Information that supports a determination that no additional evaluation is required shall be documented in the final report.

Subchapter D. SITE-SPECIFIC STANDARD

§ 250.402. Human health and environmental protection goals.

* * * * *

(d) If a person is using the site-specific standard to protect ecological receptors under this subchapter or [in accordance with]as a result of selecting § 250.311(e)(4) when ecological receptors cannot be evaluated under the Statewide health standard, the following shall be performed:

* * * * *

(3) Implementation of the selected remedy, which may include mitigation measures under § [230.311(f)] 250.311(f), that is protective of the ecological receptors.

* * * * *

§ 250.404. Pathway identification and elimination.

(a) The person shall use <u>Department or</u> Department-approved EPA or ASTM guidance to identify any potential current and future exposure pathways for both human receptors and environmental receptors identified in § 250.402 (relating to human health and environmental protection goals).

* * * *

§ 250.409. Risk assessment report.

The risk assessment report shall conform to this subchapter and Subchapter F (relating to exposure and risk determinations), and shall include the following unless not required under § 250.405 (relating to when to perform a risk assessment):

(1) Except when submitted in combination with a remedial investigation report, a[A] risk assessment report that uses site characterization information from an approved remedial investigation report to describe[s] the potential adverse effects, including the evaluation of ecological receptors, under both current and planned future conditions caused by the presence of regulated substances in the absence of any further control, remediation or mitigation measures.

§ 250.410. Cleanup plan.

- (d) A cleanup plan is required when an institutional or engineering control is used as a remedy to address current and future exposure pathways or exposure pathways that existed prior to submitting an NIR.
- (e) A cleanup plan is not required and no remedy is required to be proposed or completed if no current or future exposure pathways exist.

§ 250.412. Combined reports.

A person does not need prior Department approval of a remedial investigation report if the remedial investigation report is submitted together with either a risk assessment report or a cleanup plan.

Subchapter E. SIA STANDARDS

§ 250.503. Remediation requirements.

* * * *

(e) A person that changes the use of the property from nonresidential to residential, or changes the use of the property to create substantial changes in exposure conditions to contamination that existed prior to the person's reuse shall notify the Department of the changes and may be required to <u>amend the baseline environmental report and</u> implement a remediation plan to address any new imminent, direct or immediate threats to human health and the environment resulting from the changes.

* * * * *

Subchapter F. EXPOSURE AND RISK DETERMINATIONS

§ 250.603. Exposure factors for site-specific standards.

(a) A risk assessment for the site-specific standard shall use site-specific exposure factors under the EPA's [Final Guidelines for Exposure Assessment, 1992 (57 FR 22888—22938)] Exposure Factors Handbook: 2011 Edition, 2011 (EPA/600/R-090/052F) or exposure factors used in the development of the Statewide health standards identified in Subchapter C (relating to Statewide health standards).

§ 250.605. Sources of toxicity information.

- (a) For site-specific standards, the person shall use appropriate reference doses, reference concentrations, cancer slope factors and unit risk factors identified in Subchapter C (relating to Statewide health standards), unless the person can demonstrate that published data, available from one of the following sources, provides more current reference doses, reference concentrations, cancer slope factors or unit risk factors:
 - (1) Integrated Risk Information System (IRIS).
 - (2) United States Environmental Protection Agency, National Center for Environmental Assessment (NCEA) Provisional Peer-Reviewed Toxicity Values (PPRTV).
 - (3) Other sources:
 - (i) Health Effects Assessment Summary Tables (HEAST)
 - (ii) Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles.
 - (iii) California EPA, California Cancer Potency Factors and Chronic Reference Exposure Levels.
 - (iv) EPA criteria documents, including drinking water criteria documents, drinking water health advisory summaries, ambient water quality criteria documents and air quality criteria documents.

(v) EPA Human Health Benchmarks for Pesticides (HHBP)

(vi) EPA PPRTV Appendix

* * * * *

Subchapter G. DEMONSTRATION OF ATTAINMENT

§ 250.707. Statistical tests.

* * * * *

(b) The following statistical tests may be accepted by the Department to demonstrate attainment of the Statewide health standard. The statistical test for soil shall apply to each distinct area of contamination. The statistical test for groundwater will apply to each compliance

monitoring well. Testing shall be performed individually for each regulated substance identified in the final report site investigation as being present at the site for which a person wants relief from liability under the act. The application of a statistical method must meet the criteria in subsection (d).

(1) For soil attainment determination at each distinct area of contamination, subparagraph (i), (ii) or (iii) shall be met in addition to the attainment requirements in §§ 250.702 and 250.703 (relating to attainment requirements; and general attainment requirements for soil).

* * * * *

- (ii) As applied in accordance with EPA approved methods on statistical analysis of environmental data, as identified in subsection (e), the 95% UCL of the arithmetic mean shall be at or below the [Statewide health standard] MSC.
- (iii) For sites with a petroleum release where full site characterization, as defined in § 250.204(b) (relating to final report), has not been done in association with an excavation remediation, attainment of the Statewide health standard shall be demonstrated using the following procedure:
 - (A) For sites regulated under Chapter 245 (relating to administration of the storage tank and spill prevention program) where there is localized contamination as defined in the document "Closure Requirements for Underground Storage Tank Systems" (DEP technical document 2530-BK-DEP2008), samples shall be taken in accordance with that document.
 - (B) For sites not covered by clause (A), including all sites being remediated under an NIR under this chapter, samples shall be taken from the bottom and sidewalls of the excavation in a biased fashion that concentrates on areas where any remaining contamination above the Statewide health standard would most likely be found. The samples shall be taken from these suspect areas based on visual observation and the use of field instruments. If a sufficient number of samples has been collected from all suspect locations and the minimum number of samples has not been collected, or if there are no suspect areas, the locations to meet the minimum number of samples shall be based on a random procedure. The number of sample points required shall be determined in the following way:
 - (I) For 250 cubic yards or less of excavated contaminated soil, five samples shall be collected.
 - (II) For each additional 100 cubic yards of excavated contaminated soil, one sample shall be collected.
 - (III) For excavations involving more than 1,000 cubic yards of contaminated soil, the remediator shall identify the number and locations of samples in a confirmatory sampling plan submitted to the Department. The remediator shall obtain the Department's approval of the confirmatory sampling plan prior to conducting attainment sampling.

- (IV) Where water is encountered in the excavation and no obvious contamination is observed or indicated, soil samples collected just above the soil/water interface shall be equal to or less than the applicable Statewide health MSC determined by § 250.308(a)(2)(ii) (relating to soil to groundwater pathway numeric values).
- (V) Where water is encountered in the excavation and no obvious contamination is observed or indicated, a minimum of two samples shall be collected from the water surface in the excavation.
- (VI) For sites where there is a release to surface soils resulting in excavation of 50 cubic yards or less of contaminated soil, samples shall be collected as described in this clause, except that two samples shall be collected.
- (C) All sample results shall be equal to or less than the applicable Statewide health MSC as determined using Tables 1—4 and 6 in Appendix A.
- (D) A vapor intrusion analysis is not necessary if the requirements of § 250.707(b)(1)(iii) are met in addition to the following:
 - (I) At least one soil sample is collected on the sidewall nearest an inhabited building within the appropriate proximity distance to a potential vapor intrusion source and there are not substantially higher field instrument readings elsewhere.
 - (II) Observations of obvious contamination and the use of appropriate field screening instruments verify that contamination has not contacted or penetrated the foundation of an inhabited building.
 - (III) Groundwater contamination has not been identified as a potential vapor intrusion concern.

* * * * *

Table 1 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ pes/	Used Aquifers		14	
Regulated Substance	CASRN	TDS ≤	2500 mg/L	TDS > 26	2500 mg/L	Nonuse Aquirers	Aquirers
= "		2	- NR	R	NR	R	NR
ACENAPHTHENE	83-32-9	[2,500] G 2,100	3'800 S	3,800 S	3,800 S	S 008'E	3'800 S
ACENAPHTHYLENE	208-96-8	[2,500] G 2,100	[7,000] G 5,800	16,000 S	16,000 S	16,000 S	16,000 S
ACEPHATE	30560-19-1	[84] <u>42</u> G	[390] <u>120</u> G	[8,400] G 4,200	[39,000] G 12,000	[84] <u>42</u> G	[390] <u>120</u> G
ACETALDEHYDE	75-07-0	Z 61	N 62	N 006,1	N 006'L	19 N	N 62
ACETONE	67-64-1	[38,000] G 31,000	[110,000] G 88.000	[3,800,000 G]	[11,000,00 G 0]	[380,000] G 310,000	1,100,000]
	4			3,100,000	8,800,000		880,000
ACETONITRILE	75-05-8	130 N	230 N	13,000 N	23,000 N	1,300 N	S,300 N
ACETOPHENONE	98-86-2	[4,200] G 3,500	[12,000] G 9,700	[420,000] G 350,000	[1,200,000 G] 970,000	[4,200] G 3,500	[12,000] G <u>9,700</u>
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	[0.19] <u>0.17</u> G	[0.89] <u>0.72</u> G	[19] 1Z G	[89] <u>72</u> G	[190] <u>170</u> G	[890] <u>720</u> G
ACROLEIN	107-02-8	0.042 N	0.18 N	4.2 N	18 N	0.42 N	1.8 N
ACRYLAMIDE	79-06-1	0.19 N	2.5 N	N 61	250 N	0.19 N	2.5 N
ACRYLIC ACID	79-10-7	2.1 N	8.8 N	210 N	880 N	210 N	
ACRYLONITRILE	107-13-1	0.72 N	3.7 N	72 N	370 N	72 N	370 N
ALACHLOR	15972-60-8	2 M	2 M	200 M	200 M	2 M	2 M
ALDICARB	116-06-3	3 M	3 M	300 M	300 M	3,000 M	3,000 M
ALDICARB SULFONE	1646-88-4	2 M	2 M	200 M	200 M	2 M	Z
ALDICARB SULFOXIDE	1646-87-3	4 M	4 M	400 M	400 M	4 M	4
ALDRIN	309-00-2	[0.043] G 0.038	[0.2] <u>0.16</u> G	[4.3] <u>3.8</u> G	[20] <u>16</u> G	20 S	20 S
ALLYL ALCOHOL	107-18-6	0.21 N	0.88 N	21 N	88 N	21 N	20 88
AMETRYN	834-12-8	H 09	H 09	H 000'9	6,000 H	H 09	09
AMINOBIPHENYL, 4-	92-67-1	[0.035] G 0.031	[0.16] <u>0.13</u> G	[3.5] <u>3.1</u> G	[16] <u>13</u> G	[35] <u>31</u> G	[160] <u>130</u> G
AMITROLE	61-82-5	[0.78] <u>0.69</u> G	[3.6] <u>2.9</u> G	5 <u>69</u> [8/]	[360] <u>290</u> G	[780] <u>690</u> G	[3,600] G 2,900
AMMONIA	7664-41-7	30,000 H	H 000'08	3'000'000 H	3,000,000 H	30,000 H	30,000 H
AMMONIUM SULFAMATE	7773-06-0		2,000 H	ı		1 1	L
ANILINE	62-53-3	2.1 N	-		l		
ANTHRACENE	120-12-7	S 99	S 99	S 99	S 99	S 99	S 99

N = Inhalation S = Aqueous solubility cap All concentrations in µg/L

R = Residential

R = Residential

N = Inhalation

R = Residential

G = Ingestion

THMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs - The values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ pes()	Used Aquifers			
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2	> 2500 mg/L	Nonuse Aquiters	4quirers
		2	NR	R	NR	R	NR
ATRAZINE	1912-24-9	3 M	3 M	300 M	W : 00€	3 M	3 M
AZINPHOS-METHYL (GUTHION)	86-50-0	[130] <u>52</u> G	[350] <u>150</u> G	[13,000] G <u>5,200</u>	[32,000] [S 15,000] G	[130] <u>52</u> G	[350] <u>150</u> G
BAYGON (PROPOXUR)	114-26-1	3 ਸ	3 H	300 H	300 H	3,000 H	3,000 H
BENOMYL	17804-35-2	[2,000] [S 270] G	[2,000] [S 1,100]	2,000 S	2,000 S	[2,000] [S 270] G	[2,000] [S 1,100]
BENTAZON	25057-89-0	200 H	200 H	20,000 H	20,000 H	Z00 H	200
BENZENE	71-43-2	2 W	₩ 9	200 M	M 200	200 M	500 M
BENZIDINE	92-87-5	[0.00098] G 0.00092	[0.015] G 0.012	[0.098] G 0.092	[1.5] <u>1.2</u> G	[0.98] <u>0.92</u> G	[15] <u>12</u> G
BENZO[A]ANTHRACENE	56-55-3	[0.32] <u>0.3</u> G	[4.9] <u>3.9</u> G	11 S	11 S	11 S	11 S
BENZO(A)PYRENE	50-32-8	0.2 M	0.2 M	3.8 S	3.8 S	3.8 S	3.8 S
BENZO[B]FLUORANTHENE	205-99-2	[0.19] <u>0.18</u> G	1.2 S	1.2 S	1.2 S	1.2 S	1.2 S
BENZO[GHI]PERYLENE	191-24-2	0.26 S	0.26 S	0.26 S	0.26	0.26 S	0.26 S
BENZOĮKJFLUORANTHENE	207-08-9	[0.19] <u>0.18</u> G	S 99'0	0.55 S	0.55	0.55 S	0.55 S
BENZOIC ACID	65-85-0	[170,000] G 140,000	[470,000] G 390,000	2,700,000 S	2,700,000 S	[170,000] G 140,000	[470,000] G 390,000
BENZOTRICHLORIDE	98-07-7	[0.056] G 0.05	[0.26] <u>0.21</u> G	[5.6] <u>5</u> G	[26] <u>21</u> [G	[56] <u>5</u> G	[260] <u>21</u> G
BENZYL ALCOHOL	100-51-6	[4,200] G 3,500	[12,000] G 9,700	[420,000] G 350,000	[1,200,000 G] 970,000	[4,200] G 3,500	[12,000] G <u>9,700</u>
BENZYL CHLORIDE	100-44-7	1. N	5.1 N	100 N	510 N	100 N	510 N
BETA PROPIOLACTONE	57-57-8	0.012 N	0.063 N	1.2 N	6.3 N	0.12 N	0.63 N
BHC, ALPHA-	319-84-6	[0.12] <u>0.1</u> G	[0.54] <u>0.43</u> G	[12] <u>10</u> G	[54] <u>43</u> G	[120] <u>100</u> G	[540] <u>430</u>
BHC, BETA-	319-85-7	[0.41] <u>0.36</u> G	[1.9] <u>1.5</u> G	[41] <u>36</u> G	100 S	100 S	100 5
BHC, GAMMA (LINDANE)	58-89-9	0.2 M	0.2 M	20 M	20 M	, 200 M	200 M
BIPHENYL, 1,1-	92-52-4	[91] <u>0.84</u> [G] I	[430] <u>3.5</u> [G] <u>N</u>	[7,200] <u>84</u> [S] N	[7,200] [S 350]	[7,200] <u>84</u> [S] N	[7,200] [S 350] N
BIS(2-CHLOROETHOXY)METHANE	111-91-1	[130] <u>100</u> G	[350] <u>290</u> G	[13,000] G 10,000	[35,000] G 29,000	[130] <u>100</u> G	[350] <u>290</u> G
BIS(2-CHLOROETHYL)ETHER	111-44-4	0.15 N	N 92.0	15 N	76 ; N	15 N	N 92
BIS(2-CHLORO-ISOPROPYL)ETHER	108-60-1	300 H	300 H	30,000 H	H, 000'0E	30,000 H	30,000 H
All concentrations in unit. M = Maximum Contaminant Level		N = Inhalation					

M = Maximum Contaminant Level All concentrations in µg/L R = Residential

N = Inhalation S = Aqueous solubility cap H = Lifetime health advisory level G = Ingestion

NR = Non-Residential G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.
PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used A	Used Aquifers	***	N. C.	A
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 25	2500 mg/L	Monuse Aquiers	Adullers
		R	NR	R	NR	R	NR
BIS(CHLOROMETHYL)ETHER	542-88-1	N 62000.0	0.004 N	N 620.0	0.4 N	N 620.0	
BISI2-ETHYLHEXYLI PHTHALATE	117-81-7	W 9	W 9	290 S	290 S	290 S	290 S
BISPHENOL A	80-05-7	[2,100] G 1.700	[5,800] G 4,900	120,000 S	120,000 S	120,000 S	120,000 S
BROMACIL	314-40-9	H 02	H 02	H 000'L	H 000'L	10 H	H 02
BROMOBENZENE	108-86-1	0.06 H	0.06 H	H 9	H 9	0.06 H	0.06 H
BROMOCHLOROMETHANE	74-97-5	H 06			H 000'6	H 06	
BROMODICHLOROMETHANE (THM)	75-27-4	80 M	80 M	8,000 M	8,000 M	80 M	80
BROMOMETHANE	74-83-9	10 H	10 H	1,000 H	1,000 H	1,000 H	1,000 1
BROMOXYNIL	1689-84-5	[830] <u>6.3</u> G	[2,300] <u>26</u> G	[83,000] G	[130,000] [S 2,600] G	[830] <u>6.3</u> G	[2,300] <u>26</u> G
BROMOXYNIL OCTANOATE	1689-99-2	[80] <u>6.3</u> [S	[80] 26 [S	S 08	80 S	S 08	S 08
		— છ	- 0				111
BUTADIENE, 1,3-	106-99-0	[0.21] <u>1.1</u> G	[1] <u>4.5</u> G	[21] <u>110</u> G	[100] <u>450</u> G	[21] <u>110</u> G	
BUTYL ALCOHOL, N-	71-36-3	[4,200] G 3,500	[12,000] G 9,700	[420,000] G 350,000	[1,200,000 G] 970,000	[42,000] G 35,000	[120,000] G 97,000
BUTYLATE	2008-41-5	400 H	400 H	40,000 H	40,000 H	400 H	400 H
BUTYLBENZENE, N-	104-51-8	[2,100] G 1,700	[5,800] G 4,900	15,000 S	15,000 S	[2,100] G 1,700	[5,800] G 4,900
BUTYLBENZENE, SEC-	135-98-8	[4,200] G 3,500	[12,000] G 9,700	17,000 S	17,000 S	[4,200] G 3,500	[12,000] G <u>9,700</u>
BUTYLBENZENE, TERT-	9-90-86	[4,200] G 3,500	[12,000] G 9,700	S 000'0E	s 000'0E	[4,200] G 3,500	[12,000] G <u>9,700</u>
BUTYLBENZYL PHTHALATE	85-68-7	[380] <u>340</u> G	[1,800] G 1,400	2,700 S	2,700 S	2,700 S	2,700
CAPTAN	133-06-2	[320] <u>280</u> G	S 009 =	S 009	S 009	500 S	200 S
CARBARYL	63-25-2	[4,200] G 3,500	[12,000] G 9,700	120,000 S	120,000 S	120,000 S	120,000 S
CARBAZOLE	86-74-8	[37] <u>33</u> G	[170] <u>140</u> G	1,200 S	1,200 S	[37] <u>33</u> [S] <u>G</u>	[170] <u>140</u> [S] <u>G</u>
CARBOFURAN	1563-66-2	40 M	40 M	4,000 M	4,000 M	40 M	40 M
CARBON DISULFIDE	75-15-0	1,500 N	6,200 N	150,000 N	620,000 N	1,500 N	6,200 N

N = Inhalation S = Aqueous solubility cap

All concentrations in µg/L

R = Residential

R = Residential

NR = Non-Residential

S = Aqueous so S = Aqueous

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

		•	Used /	Used Aquifers		.:	
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2	TDS > 2500 mg/L	Nonuse Aquiters	Aquiters
1.2		R	NR	2	NR .	R	S.
CARBON TETRACHLORIDE	56-23-5	5 M	W 9	500 M	M : 005	50 M	50 M
CARBOXIN	5234-68-4	H 002	H 002	H 000'02	H : 000'02	H 002	700 H
CHLORAMBEN	133-90-4	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLORDANE	57-74-9	2 M	2 M	56 S	S 99	S 95	S 99
CHLORO-1,1-DIFLUOROETHANE, 1-	75-68-3	110,000 N	440,000 N	1,400,000 S	1,400,000 S	110,000 N	440,000 N
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	107-05-1	2.1 N	N 8.8	210 N	N 880	210 N	880 N
CHLOROACETALDEHYDE	107-20-0	2.4 G	[11] <u>10</u> G	240 G	[1,100] G 1,000	2.4 G	(11 <u>110</u>
[CHLOROACETOPHENONE, 2-]	[532-27-4]	[1.3] [G	[3.5] [G	[130] [G	[350] [G	[1,300] [G	[3,500] [G
CHLOROANILINE, P.	106-47-8	[3.7] <u>3.3</u> G	[17] <u>14</u> G	[370] <u>330</u> G	[1,700] G 1,400	[3.7] <u>3.3</u> G	[17] <u>14</u> G
CHLOROBENZENE	108-90-7	100 M	100 M	10,000 M	10,000 M	10,000 M	10,000 M
CHLOROBENZILATE	510-15-6	[6.6] <u>5.9</u> G	[31] <u>25</u> G	[660] <u>590</u> G	[3,100] G 2,500	[6,600] G 5,90 <u>0</u>	13,000 S
CHLOROBUTANE, 1-	109-69-3	[1,700] G 1,400	[4,700] G 3,900	[170,000] G 140,000	[470,000] G 390,000	[1,700] G 1,400	[4,700] G 3,900
CHLORODIBROMOMETHANE (THM)	124-48-1	80 M	80 M	B,000 M	8,000 M	8,000 M·	8,000 M
CHLORODIFLUOROMETHANE	75-45-6	110,000 N	440,000 N	2,900,000 S	2,900,000 S	110,000 N	440,000 N
CHLOROETHANE	75-00-3	[250] [G 21,000]	[1,200] [G 88,000] N	[25,000] [G 2,100,000] N	[20,000] [G 5,700,000]	[25,000] [2,100,000 G]]	[120,000] [5,700,000 G J S
CHLOROFORM (THM)	67-66-3	80 M	80 M	8,000 M	M 000'8	800 M	800 M
CHLORONAPHTHALENE, 2-	91-58-7	[3,300] G 2,800	008,7 5 [008,7	12,000 S	12,000 S	[3,300] G 2,800	[9,300] 7,800
CHLORONITROBENZENE, P-	100-00-5	[42] 4.2 [G]	[120] <u>18</u> [G	[4,200] [G 420] N	[12,000] [G 1.800]	[42] 4.2 [G	[120] # [120] # [120] #
CHLOROPHENOL, 2-	95-57-8	40 H	40 H	4,000 H	4,000 H	40 H	40 H
CHLOROPRENE	126-99-8	0.16 N	N 58.0	16 N	N. 83 N	16 N	83 N
CHLOROPROPANE, 2-	75-29-6	210 N	880 N	21,000 N	88,000 N	210 N	880 N

All concentrations in µg/L

R = Residential

R = Residential

NR = Non-Residential

G = Ingestion

THMs - The values listed for trihalomethanes (THMs) are the total for all HAAs combined.

HAAs - The values listed are for individual or total combined.

N = Inhalation S = Aqueous solubility cap

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			√ pesn	Used Aquifers			- I will form
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 25	2500 mg/L	Nomes Admiss	duners
		8	NR	R	NR	æ	NR
CHLOROTHALONIL	1897-45-6	[240] <u>38</u> G	[600] <u>160</u> [S	S 009	s 009	[240] <u>38</u> G	[600] <u>160</u> [S
		,	- ଓା				-0
CHLOROTOLUENE, O-	95-49-8	100 H	100 H	10,000 H	10,000 H	100 H	100 H
CHLOROTOLUENE, P-	106-43-4	100 H	100 H	10,000 H	10,000 H	100 H	H 001
CHLORPYRIFOS	2921-88-2	2 H	2 H	200 H	200 H	2 H	2 H
CHLORSULFURON	64902-72-3	[2,100] G	[5,800] G	i	190,000 [S	[2,100] G	[5,800] G
		069	1,900	000'69 000'69	_ (5	069	<u>1,900</u>
CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	1861-32-1	H 02	H 02	S 009	S 009	S 009	200 S
	218-01-9	[1.9] <u>1.8</u> G	1.9 S	1.9 S	1.9 S	1.9 S	1.9 S
CRESOL(S)	1319-77-3	1,300 N	S,300 N	130,000 N	230,000 N	130,000 N	•
CRESOL, DINITRO-O-,4,6-	534-52-1	[3.3] <u>2.8</u> G	[9.3] <u>7.8</u> G	[330] <u>280</u> G	[930] <u>780</u> G	[3,300] G 280	[9,300] G 780
CRESOL, O- (METHYLPHENOL, 2-)	95-48-7	[2,100] G 1,700	[5,800] G 4,900	[210,000] G 170,000	[580,000] G 490,000	[210,000] G 170,000	[580,000] G 490,000
CRESOL, M (METHYLPHENOL, 3-)	108-39-4	[2,100] G	[5,800] G 4,900	[210,000] G 170,000	[580,000] G 490.000	[2,100,000 G	2,500,000 S
						1,700,000	
CRESOL, P (METHYLPHENOL, 4-)	106-44-5	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G 17,000	[58,000] G 49,000	[210,000] G 170,000	[580,000] G 490,000
CRESOL, P-CHLORO-M-	59-50-7	[4,200] G 3,500	[12,000] G 9,700	[420,000] G 350,000	[1,200,000 G 1 970,000	[4,200] G 3,500	[12,000] G 9,700
CROTONALDEHYDE	4170-30-3	[0.38] <u>0.34</u> G	[1.8] <u>1.4</u> G	[38] <u>34</u> G	[180] <u>140</u> G	[38] <u>34</u> G	[180] <u>140</u> G
CROTONALDEHYDE, TRANS-	123-73-9	[0.38] <u>0.34</u> G	[1.8] <u>1.4</u> G	[38] <u>34</u> G			
CUMENE (ISOPROPYL BENZENE)	98-82-8	840 N	3,500 N	ı	- 1	50,000 S	50,000
CYANAZINE	21725-46-2			- 1	- 1	- 1	-
CYCLOHEXANE	110-82-7	13,000 N	53,000 N			13,000 N	- 1
CYCLOHEXANONE	108-94-1	1,500 N	6,200 N	150,000 N	620,000 N	1,500 N	6,200 N
CYFLUTHRIN	68359-37-5	1 8	1 S	1 S	1 S		- 1
CYROMAZINE	66215-27-8	[310] G	[880] G	[31,000] G	[88,000] G	[310] G 17.000	[880] G 49.000
DDD, 4.4'-	72-54-8	[3] <u>2.7</u> G	[14] <u>11</u> G	160 S	160 S	160 S	1 1
DDE, 4,4'-	72-55-9	[2.1] <u>1.9</u> G	[10] <u>8</u> G	40 S			
DDT, 4,4'-	50-29-3	[2.1] <u>1.9</u> G	5.5 S	5.5 S	5.5 S	5.5 S	5.5 S
All concentrations in until M = Maximum Contaminant Level		N = Inhalation				-	

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential

NR = Non-Residential G = Ingestion THMs are the total for all THMs combined. THMs — The values listed for trihalomethanes (THMs) are the total for all HAAs combined. HAAs — The values listed for haloacetic acids (HAAs) are the total for all HAAs combined. PFOA and PFOS values listed are for individual or total combined.

Table 1 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ pes/)	Used Aquifers			
Regulated Substance	CASRN	TDS ≤	2500 mg/L	TDS > 2500 mg/L	00 mg/L	Monuse Aquirers	vquirers
	*	R	NR	R	NR	R	NR
DI(2-ETHYLHEXYL)ADIPATE	103-23-1	400 M	400 M	40,000 M	40,000 M	200,000 S	200,000 S
DIALLATE	2303-16-4	[12] <u>11</u> G	[56] <u>45</u> G	[1,200] G 1,100	[5,600] G 4,500	[12,000] G 11,000	40,000 S
DIAMINOTOLUENE, 2,4-	95-80-7	[0.18] <u>0.16</u> G	[0.85] <u>0.68</u> G	[18] 16 G	[85] <u>68</u> G	[180] 160 G	[850] <u>680</u> G
DIAZINON	333-41-5	т Т	Ŧ	100 H	100 H	1 H	T -
DIBENZO[A,HJANTHRACENE	53-70-3	[0.055] G 0.052	0.6 S	S 9.0	0.6 S	S 9.0	0.6 S
DIBENZOFURAN	132-64-9	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,500	4,500 S	[4,500] [S 3,500] G	4,500
DIBROMO-3-CHLOROPROPANE, 1,2-	96-12-8	0.2 M	0.2 M	20 M	20 M	20 M	20 M
DIBROMOBENZENE, 1,4-	106-37-6	[420] <u>350</u> G	[1,200] G 970	20'000 S	20,000 S	[420] <u>350</u> G	[1,200] G 970
DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	106-93-4	0.05 M	0.05 M	9 W	2 M	5 M	5 M
DIBROMOMETHANE	74-95-3	8.4 N	35 N	840 N	3,500 N	. 840 N	3,500 N
DIBUTYL PHTHALATE, N-	84-74-2	[4,200] G 3,500	[12,000] G <u>9,700</u>	[400,000] [S 350,000] G	400,000 8	400,000 S	400,000 S
DICAMBA	1918-00-9	4,000 H	4,000 H	400,000 H	400,000 H	4.000 H	4.000 H
DICHLOROACETIC ACID (HAA)	7[6]9-43-6	W 09	M 09	6,000 M	6,000 M	W 09	W 09
DICHLORO-2-BUTENE, 1,4-	764-41-0	0.012 N	0.06 N	1.2 N	N 9	0.012 N	0.06 N
DICHLORO-2-BUTENE, TRANS-1,4-	110-57-6	0.012 N	0.06 N	1.2 N	N 9	0.012 N	0.06 N
DICHLOROBENZENE, 1,2-	95-50-1	M 009	M 009	M 000'09	60,000 M	60,000 M	60,000 M
DICHLOROBENZENE, 1,3-	541-73-1	H 009	H 009	Н 000'09	H 000'09	H 000'09	H 000'09
DICHLOROBENZENE, P-	106-46-7	75 M	75 M	7,500 M	7,500 M	7,500 M	7,500 🔼
DICHLOROBENZIDINE, 3,3'-	91-94-1	[1.6] <u>1.4</u> G	[7.6] <u>§</u> G	[160] <u>140</u> G	[760] <u>600</u> G	[1,600] G 1,400	3,100
DICHLORODIFLUOROMETHANE (FREON 12)	75-71-8	1,000 H	1,000 H	100,000 H	100,000 j H	100,000 H	100,000 H
DICHLOROETHANE, 1,1-	75-34-3	31 N	160 N	3,100 N	16,000 N	310 N	1,600 N
DICHLOROETHANE, 1,2-	107-06-2	5 M	5 M	200 M	200 M	50 M	50 M
DICHLOROETHYLENE, 1,1-	75-35-4	7 M	7 M	M 002	700 M	M 02	70 M
DICHLOROETHYLENE, CIS-1,2-	156-59-2	70 M	70 M	7,000 M	7,000 M	M 002	M 002
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	100 M	100 M	10,000 M	10,000 M		
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	5 M	2 W	200 M	200 M	500 M	200 M

M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential NR = Non-Residential

N = Inhalation S = Aqueous solubility cap

THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined. HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined. PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			Used	Used Aquifers		Alcold	1 160
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 25	> 2500 mg/L	Rollinse Adullels	Adullel S
	h .	~	NR	R	NR	R	NR
DICHLOROPHENOL, 2,4-	120-83-2	20 H	20 H	Z,000 H	2,000 H	20,000 H	
DICHLOROPHENOXYACETIC ACID, 2,4- (2,4-D)	94-75-7	M 07	M 02	7,000 M	7,000 M	M 000'02	- 1
DICHLOROPROPANE 1.2-	78-87-5	5 M	2 W	M 005	200 M	20 M	50 M
DICHLOROPROPENE, 1,3-	542-75-6	[7.3] <u>6.5</u> G	[34] <u>27</u> G	[730] <u>650</u> G	[3,400] G 2,700	[730] <u>650</u> G	[3,400] G <u>2,700</u>
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	75-99-0	Z00 M	200 M	20,000 M	20,000 M	Z0,000 M	Z0,000 M
DICHLORVOS	62-73-7	[2.5] <u>2.2</u> G	[12] <u>9.4</u> G	[250] <u>220</u> G	[1,200] G 940	[2.5] <u>2.2</u> G	[12] <u>9.4</u> G
DICYCLOPENTADIENE	77-73-6	0.63 N	2.6 N	83 N	Z60 N	0.63 N	2.6
DIELDRIN	60-57-1	[0.046] G 0.041	[0.21] <u>0.17</u> G	[4.6] <u>4.1</u> G	[21] <u>17</u> G	[46] <u>41</u> G	170 S
DIETHYL PHTHALATE	84-66-2	[33,000] G 28,000	[93,000] G 78,000	1,100,000 S	1,100,000 S	1,100,000 S	1,100,000 S
DIFLUBENZURON	35367-38-5	200 S	200 S	200 S	200 S	200 S	200 S
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	H 009	H 009	Н 000'09	H 000'09	600 H	800 H
DIMETHOATE	60-51-5	9 <u>97</u> [8.8]	[23] <u>210</u> G	[830] G 7,600	[2,300] G 21,000	[8,300] G 76,000	
DIMETHOXYBENZIDINE, 3,3-	119-90-4	[0.46] <u>0.41</u> G	[2] <u>1.7</u> G	[46] <u>41</u> G	[210] <u>170</u> G	[460] <u>410</u> G	[2,100] G 1,700
DIMETHRIN	70-38-2	398	36 S	S 96	36 S	36 S	36 S
DIMETHYLAMINOAZOBENZENE, P-	60-11-7	[0.16] 0.14 G	[0.74] 0.59 G	[16] <u>14</u> G	[74] <u>59</u> G	[160] <u>140</u> G	[740] <u>590</u> G
DIMETHYLANILINE, N,N-	121-69-7	[83] <u>24</u> G	[230] <u>100</u> G	[8,300] G 2,400	[23,000] G 10,000	[8,300] G 2,400	[23,000] G 10,000
DIMETHYLBENZIDINE, 3,3-	119-93-7	[0.066] G 0.059	[0.31] <u>0.25</u> G	9 <u>6.6</u> [6.6]	[31] <u>25</u> G	[66] <u>59</u> G	[310] <u>250</u> G
DIMETHYL METHYLPHOSPHONATE	756-79-6	100 H	100 H	10,000 H	10,000 H	_ [100
DIMETHYLPHENOL, 2,4-	105-67-9	ව <u>069</u> [0£8]	[2,300] G 1,900	[83,000] G	[230,000] G <u>190,000</u>	[830,000] G	[2,300,000] 1,900,000
DINITROBENZENE, 1,3-	0-69-66	Ŧ	T	100 H	100 H	1,000 H	
DINITROPHENOL, 2,4-	51-28-5	9 <u>69</u> [68]	[230] 190 G	[8,300] G	[23,000] G 19,000	[83,000] G 69,000	[230,000] G 190,000
DINITROTOLUENE, 2,4-	121-14-2	[2.4] <u>2.1</u> G	[11] <u>8.8</u> G	[240] <u>210</u> G	[1,100] G 880	[2,400] G 2,10 <u>0</u>	[11,000] G 8,800

All concentrations in µg/L

R = Residential

R = Residential

N = Inhalation

R = Residential

G = Ingestion

THMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs - The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

N = Inhalation S = Aqueous solubility cap

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			A hasil	Used Aquifers			
	1	ŀ				Nonuse Aguifers	Aguifers
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2500 mg/L	100 mg/L		
		R	NR	Y	NR	æ	N.
DINITROTOLUENE, 2,6- (2,6-DNT)	606-20-2	[0.49] <u>0.43</u> G	[2] <u>1.8</u> G	[49] <u>43</u> G	[230] <u>180</u> G	[490] <u>430</u> G	[2,300] G 1,800
DINOSEB	88-82-7	M 2	W 2	M 007	M: 002	M 000'2	M 000'Z
DIOXANE, 1,4-	123-91-1	[6.4] <u>6.5</u> [N]	[32] <u>27</u> [N]	[640] <u>650</u> [N]	[3,200] [N 2,700] G	[64] <u>65</u> [N	[320] <u>270</u> [N] G
DIPHENAMID	957-51-7	Z00 H	200 H	20,000 H	20,000 H	200 H	200 H
DIPHENYLAMINE	122-39-4	[1,000] G 3,500	[2,900] G 9,700	[100,000] [G 300,000] S	[290,000] [G 300,000] S	3 000'00E	300,000
DIPHENYLHYDRAZINE, 1,2-	122-66-7	[0.91] <u>0.22</u> [G]]	[4.3] <u>1.1</u> [G	[91] <u>22</u> [G]	[250] 110 [S	[250] <u>22</u> [S	[250] <u>110</u> [S
DIQUAT	85-00-7	20 M	20 M	2,000 M	2,000 M	20 M	20 M
DISULFOTON	298-04-4	0.7 H	H 2:0	70 H	H: 02	700 H	700 H
DITHIANE, 1,4-	505-29-3	80 H	H 08	8,000 H	H 000'8	80 H	80 H
DIURON	330-54-1	[83] <u>69</u> G	[230] <u>190</u> G	[8,300] G 6,900	[23,000] G 19,000	[83] <u>69</u> G	[230] <u>190</u> G
ENDOSULFAN	115-29-7	[250] <u>210</u> G	480 S	480 S	480 S	480 S	480 S
ENDOSULFAN I (APLHA)	9-96-656	[250] <u>210</u> G	200 S	200 S	S 003	[250] <u>210</u> G	S 005
ENDOSULFAN II (BETA)	33213-65-9	[250] <u>210</u> G	450 S	450 S	450 S	[250] <u>210</u> G	450 S
ENDOSULFAN SULFATE	1031-07-8	120 S	120 S	120 S	120 S	120 S	120 S
ENDOTHALL	145-73-3	100 M	100 M	10,000 M	10,000 ¡ M	100 M	100 M
ENDRIN	72-20-8	2 M	2 M	200 M	200 M	2 M	2 M
EPICHLOROHYDRIN	106-89-8	2.1 N	8.8 N	210 N	880 N	210 N	N 088
ETHEPHON	16672-87-0	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G 17,000	[58,000] G 49,000	[210] <u>170</u> G	[580] <u>490</u>
ETHION	563-12-2	[21] <u>17</u> G	[58] <u>49</u> G	850 S	S 850 S	[21] <u>17</u> G	[58] <u>49</u> G
ETHOXYETHANOL, 2- (EGEE)	110-80-5	420 N	1,800 N	42,000 N	180,000 N	42,000 N	180,000 N
ETHYL ACETATE	141-78-6	150 [G	620 [G]	[150,000] [G 15,000]	62,000 [G]	[150,000] [15,000 G	9 1 000'29 0
20		Z!	Z]	Z	ZI	Z	_ Z

M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L NR = Non-Residential R = Residential

N = Inhalation S = Aqueous solubility cap

THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined. HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined. PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			A Dsed A	Used Aquifers		, constant	160 20
Requiated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 25	2500 mg/L	Monase Adulters	duiteis
		œ	NR	R	NR	R	NR R
ETHYL ACRYLATE	140-88-5	[15] <u>14</u> G	[70] <u>57</u> [N	[1,500] G 1,400	(7,000] [N 5,700]	[1,500] G 1,400	[7,000] [N] <u>5,700</u>]
חואס אינים א	100-41-4	700 M	700 M	70,000 M	70,000 M	70,000 M	M 000,07
ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	759-94-4	[1,000] G 1,700	ŀ		[290,000] [G 370,000] S	[1,000] G 1,700	[2,900] G 4,900
ETHYL ETHER	60-29-7	[8,300] G 6,900	[23,000] G 19,000	[830,000] G 690,000	[2,300,000 G] 1,900,000	[8,300] G 6,900	[23,000] G 19,000
ETHY! METHACRY! ATE	97-63-2	990 N	2,600 N	N 000'E9	260,000 N	e30 N	2,600 N
ETHYLENE CHLORHYDRIN	107-07-3	5 <u>069</u> [088]	[2,300] G 1,900	[83,000] G 69,000	[230,000] G 190,000	[830] <u>690</u> G	[2,300] G 1,900
ETHYLENE GLYCOL	107-21-1	14,000 H	14,000 H	1,400,000 H	1,400,000 H	1,400,000 H	1,400,000 H
ETHYLENE THIOUREA (ETU)	96-45-7	[3.3] <u>2.8</u> G	[9.3] 7.8 G	[330] <u>280</u> G	[930] <u>780</u> G	[3,300] G 2,800	[9,300] G 7,800
ETHYLP-NITROPHENYL	2104-64-5	[0.42] <u>0.35</u> G	[1] <u>0.97</u> G	[42] <u>35</u> G	[120] <u>97</u> G	[0.42] <u>0.35</u> G	[1.2] <u>0.97</u> G
FENAMIPHOS	22224-92-6	H 7.0	0.7 H	H 0/	70 H	0.7 H	- 1
FENVALERATE (PYDRIN)	51630-58-1	85 S	85 S	85 S	85 S	85 S	- 1
FLIOMETURON	2164-17-2	H 06	H 06	H 000'6	9,000 H	H 06	90 H
FLUORANTHENE	206-44-0	260 S	260 S	260 S	260 .5	. 1	- 1
FLUORENE	86-73-7	[1,700] G 1,400	1,900 S	1,900 S	1,900 S	1,900 S	
FLUOROTRICHLOROMETHANE (FREON 11)	75-69-4	Z,000 H	2,000 H	200,000 H			200,000 H
FONOFOS	944-22-9	10 H	10 H	1,000 H	1,000 H	10 H	10
FORMALDEHYDE	20-00-0	1,000 H	1,000 H	100,000 H	100,000 H	100,000 H	100,000
FORMIC ACID	64-18-6	0.63 N	2.6 N	83 N	260 N	6.3 N	_
FOSETYL-AL	39148-24-8	[130,000] G	[350,000] G	[13,000,00 G	[35,000,00 G	[130,000] G 87,000	[350,000] G 240,000
				8,700,000	24.000.00		
FURAN	110-00-9	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3.500	[12,000] G 9,700	[4,200] G 3,500	[12,000] G 9,700

N = Inhalation S = Aqueous solubility cap

All concentrations in µg/L

R = Residential

R = Lifetime health advisory level

NR = Non-Residential

G = Ingestion

THMs - The values listed for trihalomethanes (THMs) are the total for all HAAs combined.

HAAs - The values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

	No. of Concession, Name of Street, or other Persons, Name of Street, or ot						
				Used Aquifers		Monitor Activities	- Cariforn
Regulated Substance	CASRN	TDS ≤ :	≤ :2500 mg/L	TDS > 2	TDS > 2500 mg/L	Monase	vquilets
		R	NR	Я	NR	R	NR.
FURFURAL	98-01-1	NJ 6F [011]	[350] 78 G	[11,000] [N	[35,000] G	(110) 19 [N	[350] <u>78</u> G
		 ©		1,900 - 00 - 0	7.800	_ 0	
GLYPHOSATE	1071-83-6	M 007	M 007	M 000'02	M 000'02	700 M	700 M
HEPTACHLOR	76-44-8	0.4 M	0.4 M	40 M	₩: 04	180 S	180 S
HEPTACHLOR EPOXIDE	1024-57-3	0.2 M	0.2 M	20 M	20 M	200 M	200 M
HEXACHLOROBENZENE	118-74-1	M L	1 M	S 9	တ	S 9	တ
HEXACHLOROBUTADIENE	87-68-3	[9.4] 8.4 G	[44] <u>35</u> G	[940] <u>840</u> G	2,900 S	2,900 S	2,900
HEXACHLOROCYCLOPENTADIENE	77-47-4	.W 09	50 M	1,800 S	1,800 S	1,800 S	1,800 5
HEXACHLOROETHANE	67-72-1	1 H	1 H	100 H	100 H	100 H	100 H
HEXANE	110-54-3	1,500 N	[6,200] [N 5,800] <u>5</u>	S 009'6	9,500 S	1,500 N	[6,200] [N 5,800] G
HEXAZINONE	51235-04-2	400 H	400 H	40,000 H	40,000 H	400 H	400 H
HEXYTHIAZOX (SAVEY)	78587-05-0	S 009	S 005	S 009	S: 009	200 S	S 009
HMX	2691-41-0	400 H	400 H	2,000 S	S 000'S	400 H	400 H
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	0.01 N	0.051 N		5.1 N	0.1 N	0.51 N
HYDROQUINONE	123-31-9	[12] <u>11</u> G	[57] <u>45</u> G	[1,200] G 1,100	[5,700] G 4,500	[12,000] G 11,000	[57,000] G 45,000
INDENO[1,2,3-CD]PYRENE	193-39-5	[0.19] <u>0.18</u> G	[2.8] <u>2.3</u> G	[19] <u>18</u> G	62 S	62 S	62 S
IPRODIONE	36734-19-7	[1,700] <u>15</u> G	[4,700] <u>62</u> G	[13,000] [S 1,500] G	[13,000] [S <u>6,200</u>] <u>G</u>	[1,700] <u>15</u> G	[4,700] <u>62</u> G
ISOBUTYL ALCOHOL	78-83-1	[13,000] G <u>10,000</u>	[35,000] G <u>29,000</u>	[1,300,000 G	[3,500,000 G]	[1,300,000 G] 1,000,000	[3,500,000 G]
ISOPHORONE	78-59-1	100 H	100 H	10,000 H	10,000 H	100,000 H	100,000 H
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	H 002	700 H	T0,000 H	70,000 H	H 002	H 002
KEPONE	143-50-0	[0.073] G <u>0.065</u>	[0.34] <u>0.27</u> G	[7.3] <u>6.5</u> G	[34] <u>27</u> G	[73] <u>65</u> G	[340] <u>270</u> G
MALATHION	121-75-5	H 009	H 2005	H 000'05	H: 000'05	140,000 S	140,000 S
MALEIC HYDRAZIDE	123-33-1	- 1	4,000 H	400,000 H	400,000 ∮H	4,000 H	4,000 H
MANEB	12427-38-2	[210] <u>11</u> G	[580] <u>45</u> G	[21,000] G <u>1,100</u>	[23,000] [S <u>4,500</u>] G	[210] <u>11</u> G	[580] <u>45</u> G
All concentrations in ug/L M = Maximum Contaminant Level		N = Inhalation					

N = Inhalation S = Aqueous solubility cap All concentrations in µg/l.

R = Residential

R = Residential

N = Inhalation

R = Residential

N = Lifetime health advisory level

S = Aqueous solons solons and PEOS values listed for trihalomethanes (THMs) are the total for all HAAs combined.

PEOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ Dasd /	Used Aquifers		Nonice Aquifore	Amilfore
Regulated Substance	CASRN	Z S SQT	2500 mg/L	TDS > 2500 mg/L	00 mg/L		dallele
	•	ď	NR	R	NR	Ж	
MERPHOS OXIDE	78-48-8	[1.3] <u>35</u> G	9 <u>76 [3.5]</u> G	[130] [G 2,300] S	[350] [G 2,300] S	[1.3] <u>35</u> G	[3.5] <u>97</u> G
METHACRYLONITRILE	126-98-7	[4.2] <u>3.5</u> G	[12] <u>9.7</u> G	[420] 350 G	[1,200] G 970	[4.2] <u>3.5</u> G	[12] <u>9.7</u> G
METHAMIDOPHOS	10265-92-6	[2.1] 1.7 G	[5.8] 4.9 G	[210] <u>170</u> G	[580] <u>490</u> G	[2.1] <u>1.7</u> G	T
METHANOL	67-56-1	[8,400] N	[35,000] N	[840,000] N 4 200,000	[3,500,000 N	[840,000] N 4,200,000	(3,500,000 N
					18,000,00	77.	18,000,00
METHOMYI	16752-77-5	200 H	200 H	20,000 H	20,000 H	200 H	
METHOXYCHLOR	72-43-5	40 M	40 M	45 S	45 S	45 S	- 1
METHOXYETHANOL, 2-	109-86-4	42 N	180 N	4,200 N	18,000 N	[42] <u>420</u> N	[180] 1,800
METHYL ACETATE	79-20-9	[42,000] G 35.000	[120,000] G 97,000	[4,200,000 G	[12,000,00 G 0]	[42,000] G 35,000	[120,000] G <u>97,000</u>
METHYL ACRYLATE	96-33-3	42 N	180 N	4,200 N	- 1		- 1
METHYL CHLORIDE	74-87-3	H 06	30 H	- 1	- 1		3,000 H
METHYL ETHYL KETONE	78-93-3	4,000 H	4,000 H	400,000 H	- 1	- 1	- 1
METHYL HYDRAZINE	60-34-4	0.042 N	0.18 N	4.2 N	18 N		- 1
METHYL ISOBUTYL KETONE	108-10-1	[3,300] G 2,800	[9,300] G 7,800	[330,000] G 280,000	[930,000] G 780,000	[330,000] G 280,000	- 1
METHYL ISOCYANATE	624-83-9	2.1 N	8.8 N		880 N		
METHYL N-BUTYL KETONE	591-78-6	N 69	260 N	. 1	7		
METHYL METHACRYLATE	80-62-6	1,500 N	6,200 N	150,000 N	- 1	ı	620,000
METHYL METHANESULFONATE	66-27-3	[7.4] <u>6.6</u> G	[34] <u>27</u> G	[740] <u>660</u> G	[3,400] G 2,700	[7.4] <u>6.6</u> G	[34] 27
METHY! PARATHION	298-00-0	1 H	T	100 H	100 H	1,000 H	ı
METHYL STYRENE (MIXED ISOMERS)	25013-15-4	84 N	350 N	8,400 N	35,000 N	84 N	350 N
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	. 20	20	2,000	2,000	200	- 1
METHYLCHLOROPHENOXYACETIC ACID (MCPA)	94-74-6	30 H	30 H	3,000 H		_ i	- 1
METHYLENE BIS(2-CHLOROANILINE), 4,4'-	101-14-4	[2.3] <u>2.1</u> G	[34] <u>27</u> G	[230] <u>210</u> G	[3,400] G 2,700	[2.3] <u>2.1</u> G	[34] <u>27</u> G

N = Inhalation S = Aqueous solubility cap

All concentrations in µg/L

R = Residential

N = Lifetime health advisory level

N = Aqueous so

NR = Non-Residential

G = Ingestion

THMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs - The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			A Dasu	Used Aquifers			:
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2500 mg/L	1,60 mg/L	Nonuse Aquiters	Aquiters
	,	R	NR	œ	NR	~	NR
METHYLNAPHTHALENE, 2-	91-57-6	[170] <u>6.3</u> [G	[470] <u>26</u> [G	[17,000] [G 630]	[25,000] [S 2,600]	[170] <u>6.3</u> [G	[470] <u>26</u> [
		N .	Z		.z)	_,2	~Z
METHYLSTYRENE, ALPHA	98-83-9	[2,900] G 2,400	[8,200] G 6,800	[290,000] G 240,000	260,000 S	[2,900] G 2,400	[8,200] G 6,800
METOLACHLOR	51218-45-2	700 H	700 H	H 000'02	H 000'02	H 00Z	H 002
METRIBUZIN	21087-64-9	70 H	70 H	7,000 H	H 000'2	70 H	707
MEVINPHOS	7786-34-7	0.87 G	2.4 G	87 G	240 G	0.87 G	2.4
MONOCHLOROACETIC ACID (HAA)	79-11-8	H 09	H 09	H 000'9	H: 000'9	H 09	H 09
NAPHTHALENE	91-20-3	100 H	100 H	10,000 H	10,000 H	[30,000] [S 10,000] H	[30,000] [S 10,000] H
NAPHTHYLAMINE, 1-	134-32-7	[0.41] <u>0.36</u> G	[1.9] <u>1.5</u> G	[41] <u>36</u> G	[190] <u>150</u> G	[410] <u>36</u> G	[1,900] G 150
NAPHTHYLAMINE, 2-	91-59-8	[0.41] <u>0.36</u> G	[1.9] <u>1.5</u> G	[41] <u>36</u> G	[190] <u>150</u> G	[410] <u>360</u> G	[1,900] G 1,500
NAPROPAMIDE	15299-99-7	4,200 G	12,000 G	S 000'02	S 000'02	4,200 G	12,000 G
NITROANILINE, O-	88-74-4	[420] <u>0.11</u> [G	[1,200] [G 0.44]	[42,000] [G 11]	[120,000] [G 44] N	[420] <u>0.11</u> [G J N	[1,200] [0.44 G
NITROANILINE, P.	100-01-6	[37] <u>33</u> G	[170] <u>140</u> G	3,300 3,300	[17,000] G 14,000	[37] 33 G	[170] <u>140</u> G
NITROBENZENE	98-95-3	[83] <u>1.2</u> [G	[230] <u>6.3</u> [G	[8,300] [G 120]	[23,000] [G <u>630</u>]	[83,000] [120 G 1 G 1	[230,000] [630 N
NITROGUANIDINE	556-88-7	H 002	H 002	H 000'02	H 000'02	H 002	700 H
NITROPHENOL, 2-	88-75-5	[330] <u>280</u> G	[930] <u>780</u> G	[33,000] G 28,000	[93,000] G 78,000	[330,000] G 28,000	[930,000] G 78,000
NITROPHENOL, 4-	100-02-7	H 09	H 09	Н 000'9	Н 000'9	[60,000] H	[60,000] E,000
NITROPROPANE, 2-	79-46-9	- 1	0.093 N	1.8 N	9.3 N	0.18 N	0.93 N
NITROSODIETHYLAMINE, N-	55-18-5	0.00045 N	0.0058 N	0.045 N	0.58 N	0.0045 N	0.058 N
NITROSODIMETHYLAMINE, N.	65-29	0.0014 N	0.018 N	0.14 N	1.8 N	0.014 N	0.18 N
All concentrations in µq/L M = Maximum Contaminant Level		N = Inhalation					

N = Inhalation S = Aqueous solubility cap M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L NR = Non-Residential R = Residential

THMs — The values listed for trihalomethanes (THMs) are the total for all THMs combined. HAAs — The values listed for haloacetic acids (HAAs) are the total for all HAAs combined. PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

		,	Used A	Used Aquifers		Monte Adultor	in the second
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L	TDS > 25	2500 mg/L	Benjoh	wallet 3
		2	NR	R	NR	ĸ	NR
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	[0.14] [G 0.031] N	[0.63] <u>0.16</u> [G] N	[14] <u>3.1</u> [G]	[63] <u>16</u> [G] N	[140] <u>3.1</u> [G J	[630] <u>16</u> [G
NITROSODI-N-PROPYLAMINE, N-	621-64-7	[0.1] <u>0.025</u> [G] N	[0.49] <u>0.13</u> [G	[10] <u>2.5</u> [G]	[49] <u>13</u> [G	[100] <u>0.25</u> [G J	[490] 1.3 [G J N
NITROSODIPHENYLAMINE, N-	86-30-6	[150] <u>19</u> [G]]	069] <u>96</u> [069]	[15,000] [G 1,900 J N	[35,000] [S 9,600]	[35,000] [S 1,900] N	(35,000] 1,000,8 1,000,00
NITROSO-N-ETHYLUREA, N-	759-73-9	[0.0084] G 0.0079	[0.13] <u>0.1</u> G	[0.84] <u>0.79</u> G	[13] <u>10</u> G	[8.4] <u>7.9</u> G	[130] <u>100</u> G
OCTYL PHTHALATE, DI-N-	117-84-0	[420] <u>350</u> G	[1,200] G 970	3'000 8	3'000 8	S 000'E	3'000 8
OXAMYL (VYDATE)	23135-22-0	200 M	200 M	20,000 M	20,000 M	200 M	200 M
PARAGUAT	1910-42-5	30 H	30 H	3,000 H		30 H	- 1
PARATHION	56-38-2	[250] <u>1</u> G	[700] <u>2.9</u> G	[20,000] [S 100] G	[20,000] [S 290] G	[250] 1 G	[700] <u>2.9</u> G
PCBS, TOTAL (POLYCHLORINATED BIPHENYLS)	1336-36-3	0.5 M	0.5 M	SO	20 M	W 5.0	0.5 M
PCB-1016 (AROCLOR)	12674-11-2	[0.37] <u>2.4</u> G	[1.7] <u>6.8</u> G	[37] <u>240</u> G	[170] <u>250</u> [G] S	[0.37] <u>2.4</u> G	[1.7] <u>6.8</u> G
PCB-1221 (AROCLOR)	11104-28-2	[0.37] 0.33 G	[1.7] <u>1.4</u> G	[37] <u>33</u> G	[170] 140 G	ll	[1.7] 1.4 G
PCB-1232 (AROCLOR)	11141-16-5	[0.37] <u>0.33</u> G	[1.7] <u>1.4</u> G		- 1	- 1	(1.711.4
PCB-1242 (AROCLOR)	53469-21-9	[0.37] <u>0.33</u> G	[1.7] 1.4 G	[37] <u>33</u> G	l	- 1	1
PCB-1248 (AROCLOR)	12672-29-6	[0.37] <u>0.33</u> G	[1.7] 1.4 G	[37] <u>33</u> G	. i	[- 1
PCB-1254 (AROCLOR)	11097-69-1	[0.37] <u>0.69</u> G	[1.7] <u>1.9</u> G	[37] <u>57</u> [G] S	57 S	[0.37] <u>0.69</u> G	(1.7) 1.9 G
PCB-1260 (AROCLOR)	11096-82-5	[0.37] 0.33 G	[1.7] <u>1.4</u> G	[37] 33 G	. 1	[0.37] <u>0.33</u> G	
PEBULATE	1114-71-2	[2,100] G 1,700	[5,800] G 4,900	92,000 S	92,000 S		
PENTACHLOROBENZENE	608-93-5	[33] <u>28</u> G	[93] <u>78</u> G	740 S	740 S	740 S	740 S
All concentrations in rig/l M = Maximum Contaminant Level		N = Inhalation					

All concentrations in µg/L M = Maximum Contaminant Level N = Inhalation R = Residential H = Lifetime health advisory level S = Aqueous so NR = Non-Residential G = Ingestion THMs — The values listed for trihalomethanes (THMs) are the total for all THMs combined. HAAs — The values listed for haloacetic acids (HAAs) are the total for all HAAs combined. PFOA and PFOS values listed are for individual or total combined.

N = Inhalation S = Aqueous solubility cap

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			/ Pool I	- Configura			
		ŀ		Osea Adamers		Nonuse Aquifers	Aquifers
Regulated Substance	CASRN	TDS ≤ 2	2500 mg/L	TDS > 2500 mg/L	00 mg/L		a damph.
		æ	NR.	8	NR	В.	NR.
PENTACHLOROETHANE	76-01-7	[8.1] <u>7.2</u> G	[38] <u>30</u> G	[810] <u>720</u> G	[3,800] G 3,000	[8.1] 7.2 G	[38] <u>30</u> G
PENTACHLORONITROBENZENE	82-68-8	[2.8] 2.5 G	[13] <u>10</u> G	[280] <u>250</u> G	440 S	440 S	440 S
PENTACHLOROPHENOL	87-86-5	1 M	1 M	100 M	100 M	1,000 M	1,000 M
PERFLUOROBUTANE SULFONATE (PFBS)	375-73-5	<u>5</u> 069	1,900 G	<u>69,000</u> G	190,000 G	S 069	1,900 G
PERFLUOROOCTANE SULFONATE (PFOS)	1763-23-1	H 70.0	H 70.0	H Z	H17	0.07 H	0.07 H
PERFLUOROOCTANOIC ACID (PFOA)	335-67-1	H 70.0	0.07 H	H Z	7 H	H 70.0	H 20.0
PHENACETIN	62-44-2	[330] <u>300</u> G	[1,500] G 1,200	[33,000] G 30,000	[150,000] G 120,000	[330,000] 300,000	760,000
PHENANTHRENE	85-01-8	1,100 S	1,100 S	1,100 S	1,100 S	1,100 S	1,100 S
PHENOL	108-95-2	2,000 H	2,000 H	200,000 H	200,000 H	Z00,000 H	200,000 H
PHENYL MERCAPTAN	108-98-5	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,500	[12,000] G 9,700	[42] <u>35</u> G	[120] <u>97</u> G
PHENYLENEDIAMINE, M-	108-45-2	[250] <u>210</u> G	[700] <u>580</u> G	[25,000] G 21,000	[70,000] G 58,000	[250,000] G 210,000	[700,000] G 580,000
PHENYLPHENOL, 2-	90-43-7	[380] <u>340</u> G	[1,800] G <u>1,400</u>	[38,000] G 34,000	[180,000] G 140,000	[380,000] G 340,000	S 000'002
PHORATE	298-02-2	[8.3] <u>6.9</u> G	[23] <u>19</u> G	[830] <u>690</u> G	[2,300] G 1,900	[8.3] <u>6.9</u> G	[23] <u>19</u> G
PHTHALIC ANHYDRIDE	85-44-9	[83,000] [G 42] N	[230,000] [G 180] N	[6,200,000 [S] 4,200]	[6,200,000 [S] 18,000]	[6,200,000 [S] 4,200] N	[6,200,000 [S] 18,000] N
PICLORAM	1918-02-1	₩ 009	200 M	M 000'05	M 000'05	200 M	500 M
[POLYCHLORINATED BIPHENYLS (PCBS)]	[1336-36-3]	[0.5] [M]	[0.5] [M]	[[20] [[50] M	[0.5] [M	[0.5] M
PROMETON	1610-18-0	400 H	400 H	40,000 H	40,000 H	400 H	400
PRONAMIDE	23950-58-5	[3,100] G 2,600	[8,800] G 7,300	15,000 S	15,000 S	[3,100] G 2,600	[8,800] G 7,300
PROPACHLOR	1918-16-7	0.1 H	0.1 H	10 H	10 H	10 H	10 H
PROPANIL	709-98-8	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G 17,000	[58,000] G 49,000	[210] <u>170</u> G	[580] <u>490</u> G
PROPANOL, 2- (ISOPROPYL ALCOHOL)	67-63-0	420 N	1,800 N	42,000 N	180,000 N	420 N	1,800 N
PROPAZINE	139-40-2	10 H	10 H	1,000 H	1,000 H	10 H	10 H
PROPHAM	122-42-9	100 H	100 H	10,000 H	10,000 H	100 H	100 H
All concentrations in up/I M = Maximum Contaminant Level		N = Inhalation		121			

M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L R = Residential NR = Non-Residential

N = Inhalation S = Aqueous solubility cap

THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined. HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.

PFOA and PFOS values listed are for individual or total combined.

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

	-()		Used /	Used Aquifers			
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 25	> 2500 mg/L	siamby asmion	rduiers
	3	괍	NR	Я	NR	ď	NR
PROPYLBENZENE. N-	103-65-1	2,100 N	8,800 N	22,000 S	52,000 S	2,100 N	8,800 N
PROPYLENE OXIDE	75-56-9	[3] <u>2.7</u> G	[14] <u>11</u> G	[300] <u>270</u> G	[1,400] G 1,100	[3] <u>2.7</u> G	114111 G
PYRENE	129-00-0	130 S	130 S	130 S	130 S	130 S	130 S
PYRETHRUM	8003-34-7	350 S	320 8	320 S	350 S	350 S	
PYRIDINE	110-86-1	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,500	[12,000] G 9,700	[420] <u>350</u> G	[1,200] G <u>970</u>
QUINOLINE	91-22-5	[0.24] <u>0.22</u> G	[1.1] <u>0.91</u> G	[24] <u>22</u> G	[110] <u>91</u> G	[240] <u>220</u> G	[1,100] 910
OUIZALOFOP (ASSURE)	76578-14-8	3008	300 S	300c	300 S	300 S	300 S
	121-82-4	2 H	2 H	200 H	200 H	2 H	2 H
RESORCINOL	108-46-3	[83,000] G	[230,000] G	[8,300,000 G	[23,000,00 G 0]	[83,000] G 69,000	[230,000] G 190,000
				6,900,000	19,000,00		
RONNEL	299-84-3	[2,100] G 1,700	[5,800] G 4,900	40,000 S	40,000 S	[2,100] G 1,700	[5,800] G 4,900
SIMAZINE	122-34-9	4 M	4 M	400 M	400 M	4 M	4 M
STRYCHNINE	57-24-9	[13] <u>10</u> G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	[13,000] G 10,000	[35,000] G 29,000
STYRENE	100-42-5	100 M	100 M	10,000 M	10,000 M	10,000 M	10,000 M
TEBUTHIURON	34014-18-1	H 009	H 009	50,000 H	50,000 H	500 H	200 H
TERBACIL	5902-51-2	H 06	H 06	H 000'6	H 000'6	H 06	H 06
TERBUFOS	13071-79-9	0.4 H	0.4 H		- 1	_	- 1
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	[13] <u>10</u> G	[35] <u>29</u> G	580 S	580 S	- I	580 S
TETRACHLORODIBENZO-P-DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	M E00000.0	0.00003 M	0.003 M	0.003 M	0.019 S	0.019
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	H 02	70 H	7,000 H	7,000 H	-	
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	0.84 N	4.3 N	84 N	430 N	- 1	- 1
TETRACHLOROETHYLENE (PCE)	127-18-4	2 M	5 M	500 M	200 M	20 M	- 1
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	[1,300] G 1,000	[3,500] G 2,900	[130,000] G 100,000	180,000 S	180,000 S	180,000 S
TETRAETHYL LEAD	78-00-2	[0.0042] G 0.0035	[0.012] G 0.0097	[0.42] <u>0.35</u> G	[1] <u>0.97</u> G	[4.2] <u>3.5</u> G	[12] <u>9,7</u> G
TETRAETHYLDITHIOPYROPHOSPHATE	3689-24-5	[21] 17 G	[58] <u>49</u> G	[2,100] G 1.700	[5,800] G 4.900	[21] <u>17</u> G	[58] <u>49</u> G

All concentrations in µg/L

R = Residential

R = Non-Residential

G = Ingestion

THMs — The values listed for trihalomethanes (THMs) are the total for all THMs combined.

HAAs — The values listed are for individual or total combined.

N = Inhalation S = Aqueous solubility cap

Table 1 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

			heall	Used Anulfare			
	10000	TOC	- 1	1	17 CO	Nonuse Aquifers	Aquifers
Regulated Substance	CASKN	۸ ۲	Zoun mg/L	2 < 201	1 US > 2500 mg/L		
		œ	NR	2	NR	2	NR.
TETRAHYDROFURAN	109-99-9	[26] <u>25</u> N	130 N	[2,600] N 2,500	13,000 N	[26] <u>25</u> N	130 N
THIOFANOX	39196-18-4	[13] <u>10</u> G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	[13] <u>10</u> G	[35] <u>29</u> G
THIRAM	137-26-8	[210] <u>520</u> G	[580] G 1,500	[21,000] [G 30,000] S	s 000'0E	[210] <u>520</u> G	[580] G 1,500
TOLUENE	108-88-3	1,000 M	1,000 M	100,000 M	100,000 M	100,000 M	100,000
TOLUIDINE, M-	108-44-1	[46] <u>41</u> G	[210] <u>170</u> G	[4,600] G 4,100	[21,000] G 17,000	[46] <u>41</u> G	[210] 170
TOLUIDINE, O	95-53-4	[46] <u>41</u> G	[210] <u>170</u> G	[4,600] G 4,100	[21,000] G 17,000	[46,000] G 41,000	[210,000] G 170,000
TOLUIDINE, P.	106-49-0	[24] <u>22</u> G	[110] <u>91</u> G	[2,400] G 2,200	[11,000] G 9,100	[24] <u>22</u> G	[110] <u>91</u> G
TOXAPHENE	8001-35-2	3 M	3 M	W 00E	W 00€	9 W	3 W
TRIALLATE	2303-17-5[[540] <u>0.91</u> G	[1,500] <u>3.8</u> G	[4,000] <u>91</u> [S] G	[4,000] [S 380]	[540] <u>0.91</u> G	[1,500] <u>3.8</u> G
TRIBROMOMETHANE (BROMOFORM) (THM)	75-25-2	80 M	80 M	8,000 M	W . 000'8	8,000 M	8,000 M
TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	76-13-1	[63,000] N 11.000	[170,000] [S 44,000] N	170,000 S	170,000 S	170,000 S	170,000 S
TRICHLOROACETIC ACID (HAA)	76-03-9	60 [H] M	09 (H) W	6,000 [H]	<u>₩</u> [H] 000'9	60 [H	<u>₩</u> 09
TRICHLOROBENZENE, 1,2,4-	120-82-1	70 M	70 M	7,000 M	7,000 M	[44,000] [S 7.000] M	[44,000] [S. 7.000 h
TRICHLOROBENZENE, 1,3,5-	108-70-3	40 H	40 H	4,000 H	H: 000'4	40 H	40 H
TRICHLOROETHANE, 1,1,1-	71-55-6	200 M	200 M	20,000 M	Z0,000 M	2,000 M	2,000 M
TRICHLOROETHANE, 1,1,2-	79-00-5	5 M	5 M	500 M	™! 009	20 M	50 M
TRICHLOROETHYLENE (TCE)	79-01-6	2 M	5 M	500 M	200 M	50 M	50 M
TRICHLOROPHENOL, 2,4,5-	95-95-4	[4,200] G 3,500	[12,000] G <u>9,700</u>	[420,000] G 350,000	[1,000,000 [S]] <u>970,000</u>] <u>G</u>	1,000,000 S	1,000,000 S

R = Residential
NR = Non-Residential
G = Ingestion
THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.
HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.
PFOA and PFOS values listed are for individual or total combined. M = Maximum Contaminant Level H = Lifetime health advisory level G = Ingestion All concentrations in µg/L

N = Inhalation S = Aqueous solubility cap

Table 1 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater Appendix A

		,	Used /	Used Aquifers	•	7	A
Regulated Substance	CASRN	TDS < 2	2500 mg/L	TDS > 2500 mg/L	00 mg/L	Moliuse Aprileis	s la line
		: Ľ	NR	R	NR	R	I
TRICHLOROPHENOL, 2,4,6-	88-06-2	[42] <u>35</u> G	[120] <u>97</u> G	[4,200] G 3,50 <u>0</u>	[12,000] G 9,700	[42,000] G 35,000	[120,000] G 97,000
TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	93-76-5	H 02	H 02	H 000'L	7,000 H	H 000'02	
TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5- (2,4,5-	93-72-1	20 M	20 M	5,000 M	5,000 M	े 50 M	20 M
TRICHLOROPROPANE, 1,1,2-	598-77-6	[210] <u>170</u> G	[580] <u>490</u> G	[21,000] G 17,000	[58,000] G 49,000	[210] <u>170</u> G	[580] <u>490</u> G
TRICHLOROPROPANE, 1,2,3-	96-18-4	40 H	40 H	4,000 H	4,000 H	4,000 H	4,000
TRICHLOROPROPENE, 1.2.3-	96-19-5	0.63 N	2.6 N	N 69	260 N	0.63 N	2.6
TRIETHYLAMINE	121-44-8	15 N	62 N	N 005'L	6,200 N	15 N	62 N
TRIETHYLENE GLYCOL	112-27-6	[83,000] G	[230,000] G 190,000	[8,300,000 G	[23,000,00 G 0]	[83,000] [83,000]	[230,000] G 190,000
	53			6,900,000	19,000,00 0		
TRIFLURALIN	1582-09-8	10 H	10 H	1,000 H	1,000 H	10 H	10 H
TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE,	95-63-6	[15] 130 N	[62] <u>530</u> N	[1,500] N 13,000	[6,200] N 53,000	[1,500] N 13,000	[6,200] N 53,000
TRIMETHYLBENZENE, 1,3,5-	108-67-8	[420] <u>130</u> [G	[1,200] [G	1	49,000 S	[420] <u>130</u> [[1,200] [
			530 J	13,000 J	14		5 _ N
TRINITROGLYCEROL (NITROGLYCERIN)	55-63-0	5 H	E C	500 H	500 H	[5] <u>500</u> H	[5] <u>500</u> H
TRINITROTOLUENE: 2.4.6-	118-96-7	2 H	4 Z	200 H	200 H	2 H	2 H
VINYL ACETATE	108-05-4	420 N	1,800 N	42,000 N	180,000 N	420 N	1,800 N
VINYL BROMIDE (BROMOETHENE)	593-60-2	1.5 N	7.8 N	150 N	780 N	- 1	78 N
ļ.,,	75-01-4	2 M	2 M	200 M	200 M	ı	20
WARFARIN	81-81-2	[13] 10 G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	[13,000] G 10,000	17,000
XYLENES (TOTAL)	1330-20-7	10,000 M	10,000 M	180,000 S	II		
ZINEB	12122-67-7	[2,100] G	[5,800] G 4,900	10,000 S	10,000 S	[2,100] G 1,700	[5,800] G <u>4,900</u>

M = Maximum Contaminant LevelH = Lifetime health advisory levelG = Ingestion All concentrations in µg/L R = Residential NR = Non-Residential

N = Inhalation S = Aqueous solubility cap

THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined. HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined. PFOA and PFOS values listed are for individual or total combined.

Table 2 - Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater Appendix A

			A heall	Head Aquifore			
Beaufated Substance	NO NO	TDS < 2	< 2500 ma/l	1001)/ www. (10	Nonuse	Nonuse Aquifers
regulated Substance	NACAS	7 6 6 7 1	Jugir	١	Zour mg/L		
,		œ	NR	8	NR	R	NR
ANTIMONY	7440-36-0	W : 9	M 9	W 009	W 009	M 000,9	M 000'9
ARSENIC	7440-38-2	10 M	10 M	1,000 M	1,000 M	10,000 M	10,000 M
ASBESTOS (fibers/L)	12001-29-5	7,000,000 M	M 000,000,7	M 000'000'2	M 000,000,7	M 000,000,7	M 000'000'2
BARIUM AND COMPOUNDS	7440-39-3	2,000 M	2,000 M	Z00,000 M	200,000 M	2,000,000 M	2,000,000 M
BERYLLIUM	7440-41-7	4 M	4 M	400 M	400 M	4,000 M	4,000 M
BORON AND COMPOUNDS	7440-42-8	H 000'9	H 000'9	H 000'009	H 000'009	H 000'000'9	H . 000'000'9
САДМІЛМ	7440-43-9	5 M	1 2 M	200 M	500 M	5,000 M	5,000 M
CHROMIUM (TOTAL)	7440-47-3	100 M	100 M	10,000 M	10,000 M	100,000 M	100,000 M
COBALT	7440-48-4	[13] <u>10</u> G	[35] <u>29</u> G	[1,300] G 1,000	[3,500] G 2,900	[13,000] G 10,000	[35,000] G 29,000
COPPER	7440-50-8	1,000 M	1,000 M	100,000 M	100,000 M	1,000,000	1,000,000
CYANIDE, FREE	57-12-5	Z00 M	200 M	20,000 M	20,000 M	200,000 M	200,000 M
FLUORIDE	16984-48-8	4,000 M	4,000 M	400,000 M	400,000 M	4,000,000 M	4,000,000 M
LEAD	7439-92-1	∑	5 M	500 M	200 M	M 000'S	5,000 M
гітніим	7439-93-2	[83] <u>69</u> C	[230] <u>190</u> G	006'9 © (8)	[23,000] G 19,000	[83,000] G	[230,000] G 190,000
MANGANESE	7439-96-5	300 H	300 H	30,000 H	30,000 H	300,000 H	H 000'008
MERCURY	7439-97-6	2 M	2 M	200 M	200 M	2,000 M	2,000 M
MOLYBDENUM	7439-98-7	40 H	40 H	4,000 H	4,000 H	40,000 H	40,000 H
NICKEL	7440-02-0	100 H	100 H	10,000 H	10,000 H	100,000 H	100,000 H
NITRATE NITROGEN	14797-55-8	10,000 M	10,000 M	1,000,000 M	1,000,000 M	10,000,000 M	10,000,000 M
NITRITE NITROGEN	14797-65-0	1,000 M	M 000,1	100,000 M	100,000 M	1;000,000 M	1,000,000 M
PERCHLORATE	6-86-0622	15 H	15 H	1,500 H	1,500 H	15,000 H	15,000 H
SELENIUM	7782-49-2	50 M	1 50 M	M 000,3	5,000 M	50,000 M	50,000 M
SILVER	7440-22-4	100 H	100 H	10,000 H	10,000 H	H 000'001	100,000 H
STRONTIUM	7440-24-6	4,000 H	4,000 H	400,000 H	400,000 H	4 ₁ 000,000 H	4,000,000 H
THALLIUM	7440-28-0	2 M	1 2 M	Z00 M	200 M	2,000 M	2,000 M
NIL	7440-31-5	[25,000] G 21,000	[70,000] G 58,000	[2,500,000] G 2,100,000	[7,000,000] G <u>5,800,000</u>	[25,000,000] G 21\000,000	[70,000,000] 58,000,000

All concentrations in µg/L (except asbestos)

M = Maximum Contaminant Level

H = Lifetime Health Advisory Level

SMCL = Secondary Maximum Contaminant Level

G = Ingestion

N = Inhalation

PA State MCL adopted as MSC for Copper and Lead

R = Residential NR = Nonresidential

Table 2 - Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater Appendix A

			Used A	Jsed Aquifers	36		Montes Amilfore	
Regulated Substance	CASRN	TDS ≤ 2500 mg/L	00 mg/L	. < SQT	TDS > 2500 mg/L		e Admies	
	±	R	AR.	2	NR	R	NR	
VANADIUM	7440-62-2	[2.9] <u>2.4</u> G	[8.2] <u>6.8</u> G	[290] <u>240</u> G	[820] <u>680</u>	G [2,900] 2,400		Ö
ZINC AND COMPOUNDS	7440-66-6	2,000 H	2,000 H	200,000	1 200,000	4 2,000,000	H 2,000,000	I

SECONE	SECONDARY CONTAMINANTS	NANTS	
REGULATED SUBSTANCE	CASRN	SMCL	UNITS
ALUMINUM	7429-90-5	200	hg/L
CHLORIDE	7647-14-5	250,000	μg/L ⊹
[COPPER]	[7440-50-8]	[1000]	[hg/L]
[FLUORIDE]	[7681-49-4]	[2,000]	[hg/L]
IRON	7439-89-6	300	ng/L
[MANGANESE]	[7439-96-5]	[05]	[hg/L]
SULFATE	7757-82-6	250,000	hg/L

All concentrations in µg/L (except asbestos)

M = Maximum Contaminant Level

H = Lifetime Health Advisory Level

SMCL = Secondary Maximum Contaminant Level

G = Ingestion

N = Inhalation

PA State MCL adopted as MSC for Copper and Lead

R = Residential NR = Nonresidential

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				No	onresi	idential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee		Subsurfa Soil 2-15 fee	
ACENAPHTHENE	83-32-9	13,000	G	190,000	C	190,000	С
ACENAPHTHYLENE	208-96-8	13,000	G	190,000	С	190,000	С
ACEPHATE	30560-19-1	[880] <u>260</u>	G	[10,000] 3,800	G	190,000	С
ACETALDEHYDE	- 75-07-0	170	N-9	[720] 710	- N	[830] 820	N-
ACETONE	67-64-1	10,000	С	10,000	С	10,000	С
ACETONITRILE	75-05-8	1,100	N	[4,800] 4,700	N	5,500	N
ACETOPHENONE	98-86-2	10,000	С	10,000	С	10,000	С
ACETYLAMINOFLUORENE, 2- (2AAF)	53-96-3	4.9	G	24	G	190,000	C
ACROLEIN	107-02-8	0.38	N	1.6	N	1.8	N
ACRYLAMIDE	79-06-1	1.7	N	22	N	[26] <u>25</u>	N
ACRYLIC ACID	79-10-7	19	N	79	N	91	N
ACRYLONITRILE	107-13-1	[6.6] <u>6.5</u>	N	33	N	[38] 37	N
ALACHLOR	15972-60-8	330	G	1,600	G	190,000	С
ALDICARB	116-06-3	220	G	3,200	G	190,000	С
ALDICARB SULFONE	1646-88-4	220	G	3,200	G	190,000	Ç
ALDICARB SULFOXIDE	1646-87-3	220	G	3,200	G	190,000	С
ALDRIN	309-00-2	1.1	G	5.4	G	190,000	С
ALLYL ALCOHOL	107-18-6	1.9	N	[8] 7.9	N	9.1	N
AMETRYN	834-12-8	2,000	G	29,000	G	190,000	С
AMINOBIPHENYL, 4-	92-67-1	0.89	G	4.3	G	190,000	С
AMITROLE	61-82-5	20	G	97	G	190,000	С
AMMONIA	7664-41-7	[1,900] 9,600	N	[8,000] <u>10,000</u>	୍ <u>ଟ</u> [N]	[9,100] <u>10,000</u>	[N] C
AMMONIUM SULFAMATE	7773-06-0	44,000	G	190,000	С	190,000	С
ANILINE	62-53-3	19	N	79	N	[91] <u>90</u>	N
ANTHRACENE	120-12-7	66,000	G	190,000	С	190,000	С
ATRAZINE	1912-24-9	81	G	400	G	190,000	С
AZINPHOS-METHYL (GUTHION)	86-50-0	[660] <u>330</u>	G	[9,600] 4,800	G	190,000	С
BAYGON (PROPOXUR)	114-26-1	880	G	13,000	G	190,000	C
BENOMYL	17804-35-2	[11,000] <u>7,800</u>	G 	[160,000] <u>38,000</u>	G 	190,000	С
BENTAZON	25057-89-0	6,600	G	96,000	G	190,000	С
BENZENE	71-43-2	57	N	[290] 280	N	330	N
BENZIDINE	92-87-5	0.018	G	0.4	G	190,000	С
BENZO[A]ANTHRACENE	56-55-3	[6] <u>6.1</u>	G	130	<u>G</u>	190,000	С
BENZO[A]PYRENE	50-32-8	[0.58] 4.2	G	[12] 91	G	190,000	С
BENZO[B]FLUORANTHENE	205-99-2	3.5	G	76	G	190,000	С
BENZO[GHI]PERYLENE	191-24-2	13,000	G	190,000	Ç	190,000	С
BENZO[K]FLUORANTHENE	207-08-9	[4] 3.5	G	76	G	190,000	С
BENZOIC ACID	65-85-0	190,000	С	190,000	С	190,000	Ç
BENZOTRICHLORIDE	98-07-7	1.4	G	7	G	10,000	C
BENZYL ALCOHOL	100-51-6	10,000	C	10,000	С	10,000	С
BENZYL CHLORIDE	100-44-7	9	N	45	N	52	N
BETA PROPIOLACTONE	57-57-8	0.11	N	[0.56] <u>0.55</u>	N 	[0.64] 0.63	N
BHC, ALPHA	319-84-6	3	G	14	G	190,000	С
BHC, BETA-	319-85-7	10	G	51	G	190,000	С
BHC, GAMMA (LINDANE)	58-89-9	17	G	83	G	190,000	С

All concentrations in mg/kg G – Ingestion N- Inhalation

Appendix A Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil A. Direct Contact Numeric Values

				No	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 feet		Subsurfa Soil 2-15 fee	
BIPHENYL, 1,1-	92-52-4	[2,300] 8.2	[G] N	[11,000] 34	[G] N	[190,000] 40	[C] N
BIS(2-CHLOROETHOXY)METHANE	111-91-1	660	G	9,600	G	10,000	С
BIS(2-CHLOROETHYL)ETHER	111-44-4	1.3	N	6.7	N	[7.7] <u>7.6</u>	N.
BIS(2-CHLORO-ISOPROPYL)ETHER	108-60-1	44	N	220	N	250	N
BIS(CHLOROMETHYL)ETHER	542-88-1	[0.0072] 0.0071	N	0.036	N	0.041	N
BIS[2-ETHYLHEXYL] PHTHALATE	117-81-7	1,300	G	6,500	G	10,000	С
BISPHENOL A	80-05-7	11,000	.G	160,000	G	190,000	С
BROMACIL	314-40-9	22,000	G	190,000	. C	190,000	С
BROMOBENZENE	108-86-1	<u>1,100</u>	N	4,700	N	5,400	N
BROMOCHLOROMETHANE	74-97-5	[770] 760	N	3,200	N	3,600	N
BROMODICHLOROMETHANE	75-27-4	12	N.	60_	⊹ N	69	N
BROMOMETHANE	74-83-9	[96] <u>95</u>	N	400	N	460	N
BROMOXYNIL	1689-84-5	[4,400] <u>180</u>	G	[64,000] <u>880</u>	G	190,000	C
BROMOXYNIL OCTANOATE	1689-99-2	[4,400] 180	G	[64,000] 880	G	190,000	С
BUTADIENE, 1,3-	106-99-0	[5.5] <u>15</u>	[G]	[27] 74	[G] <u>N</u>	85	N
BUTYL ALCOHOL, N-	71-36-3	10,000	С	10,000	С	10,000	C
BUTYLATE	2008-41-5	10,000	С	10,000	C	10,000	С
BUTYLBENZENE, N-	104-51-8	10,000	С	10,000	Ç	10,000	С
BUTYLBENZENE, SEC-	135-98-8	10,000	С	10,000	С	10,000	С
BUTYLBENZENE, TERT-	98-06-6	10,000	. C	10,000	С	10,000	С
BUTYLBENZYL PHTHALATE	85-68-7	9,800	G	10,000	С	10,000	С
CAPTAN	133-06-2	8,100	G	40,000	G	190,000	С
CARBARYL	63-25-2	22,000	G	190,000	Ċ	190,000	С
CARBAZOLE	86-74-8	930	G	4,600	G	190,000	C
CARBOFURAN	1563-66-2	1,100	G	16,000	G	190,000	С
CARBON DISULFIDE	75-15-0	10,000	С	10,000	C	10,000	С
CARBON TETRACHLORIDE	56-23-5	[74] <u>75</u>	N	370	N	430	N
CARBOXIN	5234-68-4	22,000	G	190,000	С	190,000	С
CHLORAMBEN	133-90-4	3,300	G	48,000	G	190,000	C
CHLORDANE	57-74-9	53	G	260	G	190,000	, C
CHLORO-1,1-DIFLUOROETHANE, 1-	75-68-3	10,000	C	10,000	С	10,000	
CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	107-05-1	19	N	80	N	[91] 92	
CHLOROACETALDEHYDE	107-20-0	[62] 69	G	[300] 340	G C	10,000	
CHLOROACETOPHENONE, 2-	532-27-4	190,000	C	190,000		190,000	
CHLOROANILINE, P-	106-47-8	93	G N	460	G N	190,000 [4,600]	
CHLOROBENZENE	108-90-7	[960] <u>950</u>		[4,000] 3,900		4,500	
CHLOROBENZILATE	510-15-6	170	G	830	G	190,000	
CHLOROBUTANE, 1-	109-69-3	8,800	G	10,000	C	10,000	
CHLORODIBROMOMETHANE	124-48-1	[17] 220	[N] G	[82] <u>1,100</u>	[N] G	[95] 10,000	C
CHLORODIFLUOROMETHANE	75-45-6	10,000	С	10,000	C	10,000	
CHLOROETHANE	75-00-3	[6,400] 10,000	[G] C	10,000	C	10,000	
CHLOROFORM	67-66-3	19	N	[97] 96	N	110	· N
CHLORONAPHTHALENE, 2-	91-58-7	18,000	G	190,000	С	190,000	C

All concentrations in mg/kg G – Ingestion N- Inhalation

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

REGULATED SUBSTANCE CHLORONITROBENZENE, P-	CASRN 100-00-5			N	onresi	dential	11
		Residential 0-15 feet		Surface Soil 0-2 feet		Subsurface Soil 2-15 feet	
		[220] <u>39</u>	[G] N	[3,200] 160	[G] N	[190,000] 180	[C]
CHLOROPHENOL, 2-	95-57-8	1,100	G	10,000	С	10,000	С
CHLOROPRENE	126-99-8	1.5	N	7.4	N	8.5	N
CHLOROPROPANE, 2-	75-29-6	1,900	N	[8,000] 7,900	N	9,100	
CHLOROTHALONIL	1897-45-6	[3,300] 1,100	G	[29,000] 5,400	G	190,000	С
CHLOROTOLUENE, O-	95-49-8	4,400	G	10,000	С	10,000	С
CHLOROTOLUENE, P-	106-43-4	4,400	Ç	10,000	С	10,000	С
CHLORPYRIFOS	2921-88-2	220	G	3,200	G	190,000	С
CHLORSULFURON	64902-72-3	[11,000] 4,400	G	[160,000] 64,000	G	190,000	С
CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)	1861-32-1	2,200	G	32,000	G	190,000	С
CHRYSENE	218-01-9	35	G	760	G	190,000	С
CRESOL(S)	1319-77-3	10,000	C	10,000	С	10,000	С
CRESOL, 4,6-DINITRO-O-	534-52-1	18	G	260	G	190,000	С
CRESOL, O- (2-METHYLPHENOL)	95-48-7	11,000	G	160,000	G	190,000	С
CRESOL, M- (3-METHYLPHENOL)	108-39-4	10,000	C	10,000	С	10,000	С
CRESOL, P- (4-METHYLPHENOL)	106-44-5	1,100	G	16,000	G	190,000	С
CRESOL, P-CHLORO-M-	59-50-7	22,000	G	190,000	G	190,000	С
CROTONALDEHYDE	4170-30-3	9.8	G	48	G	10,000	Ç
CROTONALDEHYDE, TRANS-	123-73-9	9.8	G	48	G	10,000	С
CUMENE (ISOPROPYL BENZENE)	98-82-8	[7,700] <u>7,600</u>	N	10,000	С	10,000	С
CYANAZINE	21725-46-2	22	G	110	G	190,000	С
CYCLOHEXANE	110-82-7	10,000	С	10,000	С	10,000	С
CYCLOHEXANONE	108-94-1	10,000	С	10,000	С	10,000	С
CYFLUTHRIN	68359-37-5	5,500	G	80,000	G	190,000	С
CYROMAZINE	66215-27-8	[1,700] <u>110,000</u>	G	[24,000] 190,000	[G] <u>C</u>	190,000	С
DDD, 4,4-	72-54-8	78	G	380	G	190,000	С
DDE, 4,4'-	72-55-9	55	G	270	G	190,000	С
DDT, 4,4'-	50-29-3	55	G	270	G	190,000	С
DI(2-ETHYLHEXYL)ADIPATE	103-23-1	10,000	С	10,000	С	10,000	С
DIALLATE	2303-16-4	300	G	1,500	G	10,000	С
DIAMINOTOLUENE, 2,4-	95-80-7	4.7	G	23	G	190,000	С
DIAZINON	333-41-5	150	G	2,200	G	10,000	С
DIBENZO[A,H]ANTHRACENE	53-70-3	1	G	22	G	190,000	С
DIBENZOFURAN	132-64-9	220	G	3,200	G	190,000	C
DIBROMO-3-CHLOROPROPANE, 1,2-	96-12-8	0.029	N	0.37	N	[0.43] 0.42	N
DIBROMOBENZENE, 1,4-	106-37-6	2,200	G	32,000	G	190,000	С
DIBROMOETHANE, 1,2- (ETHYLENE DIBROMIDE)	106-93-4	0.74	N	3.7	N	[4.3] 4.2	N
DIBROMOMETHANE	74-95-3	[77] <u>76</u>	N	[320] 310	· N	[370] 360	N
DIBUTYL PHTHALATE, N-	84-74-2	10,000	С	10,000	Ç	10,000	С
DICAMBA	1918-00-9	6,600	G	96,000	G	190,000	С
DICHLOROACETIC ACID	76-43-6	370	G	1,800	G	10,000	C
DICHLORO-2-BUTENE, 1,4-	764-41-0	0.11	N	[0.53] 0.52	N	[0.61] <u>0.6</u>	N
DICHLORO-2-BUTENE, TRANS-1,4- DICHLOROBENZENE, 1,2-	110-57-6 95-50-1	[0.1] <u>0.11</u> 3,800	N N	0.52 10,000	N C	10,000	N C

All concentrations in mg/kg G – Ingestion N- Inhalation

Appendix A Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil A. Direct Contact Numeric Values

REGULATED SUBSTANCE				No	nresid	iential	
	CASRN	Residential 0-15 feet		Surface Soil 0-2 feet		Subsurface Soil 2-15 feet	
DICHLOROBENZENE, 1,3-	541-73-1	10,000	С	10,000	С	10,000	С
DICHLOROBENZENE, P-	106-46-7	40	N	200	Ñ	230	N
DICHLOROBENZIDINE, 3,3'-	91-94-1	41	G	200	G	190,000	С
DICHLORODIFLUOROMETHANE (FREON 12)	75-71-8	1,900	N	8,000	N	9,100	N
DICHLOROETHANE, 1,1-	75-34-3	280	N	1,400	N	1,600	N
DICHLOROETHANE, 1,2-	107-06-2	17	N	[86] 85	Ν.	98	N
DICHLOROETHYLENE, 1,1-	75-35-4	3,800	N	10,000	С	10,000	С
DICHLOROETHYLENE, CIS-1,2-	156-59-2	440	G	6,400	G	10,000	С
DICHLOROETHYLENE, TRANS-1,2-	156-60-5	[1,100]	[N]	[4,800]	[N]	[5,500]	[N]
= (III		4,400	G	10,000	c	10,000	C
DICHLOROMETHANE (METHYLENE CHLORIDE)	75-09-2	1,300	G	10,000	С	10,000	С
DICHLOROPHENOL, 2,4-	120-83-2	660	G	9,600	G	190,000	С
DICHLOROPHENOXYACETIC ACID, 2,4- (2,4-D)	94-75-7	2,200	G	32,000	G	190,000	С
DICHLOROPROPANE, 1,2-	78-87-5	[45] <u>0.12</u>	N	[220] <u>0.6</u>	N	[260]	Ν
						0.69	
DICHLOROPROPENE, 1,3-	542-75-6	110	N	[560] <u>550</u>	N	640	N
DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	75-99-0	6,600	G	10,000	С	10,000	С
DICHLORVOS	62-73-7	64	G	310	G	10,000	Ç_
DICYCLOPENTADIENE	77-73-6	[6] <u>5.7</u>	N	24_	N	27	N
DIELDRIN	60-57-1	1.2	G	[6] <u>5.7</u>	G	190,000	С
DIETHANOLAMINE	111-42-2	440	G	6,400	G	10,000	C
DIETHYL PHTHALATE	84-66-2	10,000	С	10,000	С	10,000	С
DIFLUBENZURON	35367-38-5	4,400	G	64,000	G	190,000	
DIISOPROPYL METHYLPHOSPHONATE	1445-75-6	10,000	С	10,000_	С	10,000	С
DIMETHOATE	60-51-5	[44] 480	G	[40] 7,000	G	190,000	С
DIMETHOXYBENZIDINE, 3,3-	119-90-4	[1,300] <u>12</u>	G	[6,500] <u>57</u>	G	190,000	C
DIMETHRIN	70-38-2	66,000	G	190,000	ပ	190,000	С
DIMETHYLAMINOAZOBENZENE, P-	60-11-7	4	G_	20_	G	190,000	С
DIMETHYLANILINE, N,N-	121-69-7	440	G	[6,400] 3,400	G	10,000	С
DIMETHYLBENZIDINE, 3,3-	119-93-7	1.7	G	8.3	G	190,000	Ç
DIMETHYL METHYLPHOSPHONATE	756-79-6	10,000	C_	10,000	С	10,000	С
DIMETHYLPHENOL, 2,4-	105-67-9	4,400	G	10,000	С	10,000	С
DINITROBENZENE, 1,3-	99-65-0	22	G	320	G	190,000	С
DINITROPHENOL, 2,4-	51-28-5	440	Ğ	6,400	G	190,000	С
DINITROTOLUENE, 2,4-	121-14-2	60	G	290	G	190,000	С
DINITROTOLUENE, 2,6- (2,6-DNT)	606-20-2	12	<u>G</u>	61	G	190,000	
DINOSEB	88-85-7	220	G	3,200	<u>G</u>	190,000	
DIOXANE, 1,4-	123-91-1	[58] <u>89</u>	N	[290] 440	N	[330] 510	
DIPHENAMID	957-51-7	6,600	G	96,000	G	190,000	
DIPHENYLAMINE	122-39-4	[5,500] <u>22,000</u>	G	[80,000] <u>190,000</u>	[G] C	190,000	
DIPHENYLHYDRAZINE, 1,2-	122-66-7	[23] <u>2.1</u>	[G] N	[110] <u>10</u>	[G] <u>N</u>	[190,000] <u>12</u>	N
DIQUAT	85-00-7	480	G	7,000	G	190,000	
DISULFOTON	298-04-4	8.8	G	130	G	10,000	
DITHIANE, 1,4-	505-29-3	2,200	G	32,000	G	190,000	
DIURON	330-54-1	440	G	6,400	G	190,000	
ENDOSULFAN	115-29-7	1,300	G	19,000	Ġ	190,000	
ENDOSULFAN I (ALPHA)	959-98-8	1,300	G	19,000	G	190,000	
ENDOSULFAN II (BETA)	33213-65-9	1,300	G	19,000	G	190,000	
ENDOSULFAN SULFATE	1031-07-8	1,300	G	19,000	G	190,000	С

All concentrations in mg/kg

G – Ingestion N- Inhalation

Appendix A Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil A. Direct Contact Numeric Values

				Nonresidential				
REGULATED SUBSTANCE	CASRN	Residential 0-15 feet		Surface Soil 0-2 feet		Subsurface Soil 2-15 feet		
ENDOTHALL	145-73-3	4,400	G	64,000	G	190,000	Ċ	
ENDRIN	72-20-8	66	G	960	G	190,000	С	
EPICHLOROHYDRIN	106-89-8	19	N -	79	N	91	N	
ETHEPHON	16672-87-0	1,100	G	16,000	G	190,000	С	
ETHION	-563-12-2	110-	G	1,600	- G	10,000	C =	
ETHOXYETHANOL, 2- (EGEE)	110-80-5	[3,900] 3,800	N	10,000	С	10,000	С	
ETHYL ACETATE	141-78-6	1,300	N	[5,600] <u>5,500</u>	N S	[6,400] <u>6,300</u>	N	
ETHYL ACRYLATE	140-88-5	150	N	[640] <u>630</u>	N	[730] 720	N	
ETHYL BENZENE	100-41-4	180	N	[890] 880	N	1,000	N	
ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)	759-94-4	[5,500] 10,000	[G] <u>C</u>	10,000	С	10,000	С	
ETHYL ETHER	60-29-7	10,000	С	10,000	С	10,000	С	
ETHYL METHACRYLATE	97-63-2	5,700	N	10,000	Ç	10,000	С	
ETHYLENE CHLORHYDRIN	107-07-3	4,400	G	10,000	C	10,000	С	
ETHYLENE GLYCOL	107-21-1	[7,700] 7,600	N	10,000	С	10,000	С	
ETHYLENE THIOUREA (ETU)	96-45-7	18	G	260	G	190,000	С	
ETHYLP-NITROPHENYL PHENYLPHOSPHOROTHIOATE	2104-64-5	2.2	G	32	G	190,000	С	
FENAMIPHOS	22224-92-6	55	G	800	G	190,000	Ç	
FENVALERATE (PYDRIN)	51630-58-1	5,500	G	10,000	С	10,000	С	
FLUOMETURON	2164-17-2	2,900	G	42,000	G	190,000	С	
FLUORANTHENE	206-44-0	8,800	G	130,000	G	190,000	Ç	
FLUORENE	86-73-7	8,800	G	130,000	G	190,000	С	
FLUOROTRICHLOROMETHANE (FREON 11)	75-69-4	10,000	С	10,000	С	10,000	С	
FONOFOS	944-22-9	440	G	6,400	G	10,000	С	
FORMALDEHYDE	50-00-0	34	N	170	N	200	N	
FORMIC ACID	64-18-6	[6] <u>5.7</u>	N	24	N	27	N	
FOSETYL-AL	39148-24-8	190,000	С	190,000	С	190,000	С	
FURAN	110-00-9	220	G	3,200	G	10,000	С	
FURFURAL	98-01-1	[660] <u>530</u>	G	[4,000] 2,600	[N] G	4,500	N	
GLYPHOSATE	1071-83-6	22,000	G	190,000	C	190,000	С	
HEPTACHLOR	76-44-8	[4] 4.1	G	20	G	190,000	C	
HEPTACHLOR EPOXIDE HEXACHLOROBENZENE	1024-57-3	2	G	10 57	G	190,000	C	
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	118-74-1	12	G		G	190,000	C	
	87-68-3	220 1,300	G	1,200	G	10,000	С	
HEXACHLOROCYCLOPENTADIENE HEXACHLOROETHANE	77-47-4		G	10,000	C	10,000	C	
HEXANE	67-72-1 110-54-3	[44] <u>46</u> 10,000	C	[220] 230 10,000	N C	[260] 270	N C	
HEXAZINONE	51235-04-2	7,300	G	110,000	G	10,000 190,000	C	
HEXYTHIAZOX (SAVEY)	78587-05-0	5,500	G	80,000	G	190,000	c	
HMX	2691-41-0	11,000	G	160,000	G	190,000	C	
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	[0.09]	N	0.45	N	0.52	N	
HYDROQUINONE	123-31-9	310	G	1,500	G	190,000	С	
INDENO[1,2,3-CD]PYRENE	193-39-5	3.5	G	76	G	190,000	C	
IPRODIONE	36734-19-7	[8,800] 420	G	[130,000] 2,100	G	190,000	С	
ISOBUTYL ALCOHOL	78-83-1	10,000	С	10,000	С	10,000	С	
	1 -00-0	10,000		10,000		10,000	<u> </u>	

All concentrations in mg/kg G – Ingestion N- Inhalation

Appendix A Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil A. Direct Contact Numeric Values

				No	nresi	dential	
REGULATED SUBSTANCE	CASRN	Residenti 0-15 fee		Surface Soil 0-2 feet		Subsurfa Soil 2-15 fee	
ISOPHORONE	78-59-1	10,000	С	10,000	С		·· C.
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	10,000	С	10,000	C	10,000	C
KEPONE	143-50-0	1.9	G	9.1	G	190,000	С
MALATHION	121-75-5	4,400	G	10,000	С	10,000	С
MALEIC HYDRAZIDE	123-33-1	110,000	G	190,000	С	190,000	С
MANEB	12427-38-2	[1,100] <u>310</u>	G	[16,000] <u>1,500</u>	G	190,000	С
MERPHOS OXIDE	78-48-8	[6.6] 220	G	[96] 3,200	G	10,000	С
METHACRYLONITRILE	126-98-7	22	G	320	G	[2,800] <u>2,700</u>	N
METHAMIDOPHOS	10265-92-6	11	G	160_	G	190,000	С
METHANOL	67-56-1	10,000	С	10,000	С	10,000	С
METHOMYL	16752-77-5	5,500	G	80,000	G	190,000	С
METHOXYCHLOR	72-43-5	1,100	G	16,000	G	190,000	C.
METHOXYETHANOL, 2-	109-86-4	380	N	1,600	N	1,800	N
METHYL ACETATE	79-20-9	10,000	С	10,000	С	10,000	C
METHYL ACRYLATE	96-33-3	380	N	1,600	N	1,800	N
METHYL CHLORIDE	74-87-3	250	N	1,200	N	1,400	N
METHYL ETHYL KETONE	78-93-3	10,000	С	10,000	С	10,000	C
METHYL HYDRAZINE	60-34-4	0.38	N	1.6	N	1.8	N
METHYL ISOBUTYL KETONE	108-10-1	10,000	, C	10,000	С	10,000	С
METHYL ISOCYANATE	624-83-9	19	N.	79	N	91	N
METHYL N-BUTYL KETONE (2-HEXANONE)	591-78-6	570	N	2,400	N	[2,800] <u>2,700</u>	N
METHYL METHACRYLATE	80-62-6	10,000	С	10,000	С	10,000	С
METHYL METHANESULFONATE	66-27-3	190	G	920	G	10,000	С
METHYL PARATHION	298-00-0	- 55_	G	800	G	190,000	С
METHYL STYRENE (MIXED ISOMERS)	25013-15-4	[770] <u>760</u>	N	[3,200] <u>3,100</u>	N.	3,600	N
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1,700	N.	[8,600] <u>8,500</u>	N ₂	[9,900] 9,800	N
METHYLCHLOROPHENOXYACETIC ACD (MCPA)	94-74-6	110	G	1,600	С	190,000	С
METHYLENE BIS(2-CHLOROANILINE), 4,4'-	101-14-4	42	G.	910	G	190,000	С
METHYLNAPHTHALENE, 2-	91-57-6	[880] <u>57</u> -	[G] <u>N</u>	[13,000] <u>240</u>	[G] <u>N</u>	[190,000] <u>270</u>	[C] N
METHYLSTYRENE, ALPHA	98-83-9	10,000_	С	10,000	C	10,000	С
METOLACHLOR	51218-45-2	10,000	С	10,000	С	10,000	С
METRIBUZIN	21087-64-9	5,500	G	80,000	G	190,000	С
MEVINPHOS	7786-34-7	5.5	G	80	G	190,000	C
MONOCHLOROACETIC ACID	79-11-8	440	G	6,400	G	190,000	C
NAPHTHALENE	91-20-3	[160] <u>13</u>	[G] <u>N</u>	[760] <u>66</u>	[G] N	[190,000] <u>77</u>	N
NAPHTHYLAMINE, 1-	134-32-7	10	G	51	·G	190,000	С
NAPHTHYLAMINE, 2-	91-59-8	10	G	51	G	190,000	
NAPROPAMIDE	15299-99-7	[22,000] <u>26,000</u>	G	190,000	С	190,000	
NITROANILINE, O-	88-74-4	[2,200] 0.95	[G] <u>N</u>	[32,000] <u>3.9</u>	[G] <u>N</u>	[190,000] <u>4.5</u>	. N
NITROANILINE, P-	100-01-6	880	G	4,600	G	190,000	С
NITROBENZENE	98-95-3	[440] 11	[G] N	[6,400] <u>55</u>	[G] <u>N</u>	[10,000] <u>63</u>	
NITROGUANIDINE	556-88-7	22,000	G	190,000	Ç	190,000	C

All concentrations in mg/kg G – Ingestion N- Inhalation

C- Cap

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

				No	onresi	idential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee		Subsurfa Soil 2-15 fe	
NITROPHENOL, 2-	88-75-5	1,800	G	26,000	G	190,000	С
NITROPHENOL, 4-	100-02-7	1,800	G	26,000	Ğ	190,000	С
NITROPROPANE, 2-	79-46-9	0.16	N	0.82	N	0.94	N
NITROSODIETHYLAMINE, N-	55-18-5	0.0041	N	0.051	N	0,059	N
NITROSODIMETHYLAMINE, N-	62-75-9	0:012	N	0.16	-N-	0.18	N-
NITROSO-DI-N-BUTYLAMINE, N-	924-16-3	[3.4] <u>0.28</u>	[G] N	[17] <u>1.4</u>	[G] N	[10,000] 1.6	[C] N
NITROSODI-N-PROPYLAMINE, N-	621-64-7	[2.7] <u>0.22</u>	[G] N	[13] <u>1.1</u>	[G] N	[10,000] 1.3	[C] N
NITROSODIPHENYLAMINE, N-	86-30-6	[3,800] 170	[G] N	[19,000] 860	[G] N	[190,000] 990	[C]
NITROSO-N-ETHYLUREA, N-	759-73-9	0.16	G	3.4	G	190,000	С
OCTYL PHTHALATE, DI-N-	117-84-0	2,200	Ğ	10,000	C	10,000	C
OXAMYL (VYDATE)	23135-22-0	5,500	G	80,000	G	190,000	C
PARAQUAT	1910-42-5	990	G	14,000	G	190,000	С
PARATHION	56-38-2	[1,300] 6.6	G	[10,000] 96	[C] G	10,000	С
PCBS, TOTAL (POLYCHLORINATED BIPHENYLS) (AROCLORS)	1336-36-3	9.3	<u>G</u>	46	G	190,000	<u>C</u>
PCB-1016 (AROCLOR)	12674-11-2	[9] <u>15</u>	G	[46] 220	G	10,000	C
PCB-1221 (AROCLOR)	11104-28-2	[9] <u>4.7</u>	[G] N	[46] <u>23</u>	[G] N	[10,000] 27	[C] N
PCB-1232 (AROCLOR)	11141-16-5	[9] 9.3	G	46	G .	10,000	C
PCB-1242 (AROCLOR)	53469-21-9	[9] 9.3	G	46	G	10,000	С
PCB-1248 (AROCLOR)	12672-29-6	9.3	G	46	G	10,000	С
PCB-1254 (AROCLOR)	11097-69-1	4.4	G	[46] 64	G	10,000	Ċ
PCB-1260 (AROCLOR)	11096-82-5	[9] 9.3	G	46	G	190,000	С
PEBULATE	1114-71-2	10,000	С	10,000	С	10,000	С
PENTACHLOROBENZENE	608-93-5	180	G	2,600	G	190,000	С
PENTACHLOROETHANE	76-01-7	210	G	1,000	G	10,000	С
PENTACHLORONITROBENZENE	82-68-8	72	G	350	G	190,000	С
PENTACHLOROPHENOL	87-86-5	47	G	230	G	190,000	С
PERFLUOROBUTANE SULFONATE (PFBS)	<u>375-73-5</u>	4,400	G	10,000	<u>C</u>	10,000	- <u>C</u>
PERFLUOROOCTANE SULFONATE (PFOS)	1763-23-1	4.4	G	64	<u>G</u>	190,000	C
PERFLUOROOCTANOIC ACID (PFOA)	335-67-1	4.4	G	<u>64</u>	G	190,000	С
PHENACETIN	62-44-2	8,500	G	41,000	G	190,000	Ç
PHENANTHRENE	85-01-8	66,000	G	190,000	С	190,000	С
PHENOL	108-95-2	3,800	N	16,000	N	18,000	N
PHENYL MERCAPTAN	108-98-5	220	G	3,200	G	10,000	С
PHENYLENEDIAMINE, M-	108-45-2	1,300	G	19,000	G	190,000	С
PHENYLPHENOL, 2-	90-43-7	[9,800] <u>9,600</u>	G	[48,000] <u>47,000</u>	G	190,000	С
PHORATE	298-02-2	44	G	640	G	10,000	Ç
PHTHALIC ANHYDRIDE	85-44-9	[190,000] <u>380</u>	[C] <u>N</u>	[190,000] <u>1,600</u>	[C] <u>N</u>	[190,000] <u>1,800</u>	[C]
PICLORAM	1918-02-1	15,000	G	190,000	С	190,000	С
PROMETON	1610-18-0	3,300	G	48,000	G	190,000	С
PRONAMIDE	23950-58-5	17,000	G	190,000	Ç	190,000	Ç
PROPACHLOR	1918-16-7	2,900	G	42,000	G	190,000	C
PROPANIL	709-98-8	1,100	G	16,000	G	190,000	С
PROPANOL, 2- (ISOPROPYL ALCOHOL)	67-63-0	3,800	N	10,000	Ç	10,000	Ċ

All concentrations in mg/kg G – Ingestion N- Inhalation

C- Cap

Appendix A Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil A. Direct Contact Numeric Values

				No	nresio	lential	
REGULATED SUBSTANCE	CASRN	Residenti 0-15 fee		Surface Soil 0-2 feet	- 1	Subsurfa Soil 2-15 fee	
PROPAZINE	139-40-2	4,400	G	10,000	С	10,000	С
PROPHAM	122-42-9	4,400	G	64,000	G	190,000	С
PROPYLBENZENE, N-	103-65-1	10,000	С	10,000	С	10,000	С
PROPYLENE OXIDE	75-56-9	78	G	380	G	690	N
PYRENE	129-00-0	6,600	G	96,000	G	190,000	Ç
PYRETHRUM	<u>8003-34-7</u>	<u>220</u>	G	3,200	G	10,000	С
PYRIDINE	110-86-1	220	G	3,200	G	10,000	С
QUINOLINE	91-22-5	[6] <u>6.2</u>	G	30	G	10,000	С
QUIZALOFOP (ASSURE)	76578-14-8	2,000_	G	29,000	G	190,000	С
RDX	121-82-4	[170] <u>230</u>	G	[830] <u>1,100</u>	G	190,000	С
RESORCINOL	108-46-3	190,000	С	190,000	: C	190,000	С
RONNEL	299-84-3	11,000	G	160,000	G	190,000	С
SIMAZINE	122-34-9	160	G	760	G	190,000	С
STRYCHNINE	57-24-9	66	G	960	G	190,000	C
STYRENE	100-42-5	10,000	С	10,000	С	10,000	С
TEBUTHIURON	34014-18-1	15,000	G	190,000	С	190,000	С
TERBACIL	5902-51-2	2,900	G_	42,000	G	190,000	С
TERBUFOS	13071-79-9	5.5	G	80	G	10,000	С
TETRACHLOROBENZENE, 1,2,4,5-	95-94-3	66	G	960	Ğ	190,000	С
TETRACHLORODIBENZO-P-DIOXIN, 2,3,7,8- (TCDD)	1746-01-6	0.00014	G	0.0007	G	190,000	С
TETRACHLOROETHANE, 1,1,1,2-	630-20-6	60	N	300	N	340	N
TETRACHLOROETHANE, 1,1,2,2-	79-34-5	[7.7] <u>7.6</u>	N	38	N	44	N
TETRACHLOROETHYLENE (PCE)	127-18-4	[770] 760	N	3,200	N	3,600	N
TETRACHLOROPHENOL, 2,3,4,6-	58-90-2	6,600	G	96,000	G	190,000	C
TETRAETHYL LEAD	78-00-2	0.022	G	0.32	G	10,000	C
TETRAETHYLDITHIOPYROPHOSPHATE	3689-24-5	110	G	1,600	G	10,000	C
TETRAHYDROFURAN	109-99-9	[240] <u>230</u>	N	[1,200] 1,100	N	[1,400] <u>1,300</u>	N
THIOFANOX	39196-18-4	66	G	960	G	190,000	C
THIRAM	137-26-8	[1,100] <u>3,300</u>	G	[16,000] <u>48,000</u>	G	190,000	С
TOLUENE	108-88-3	10,000	C	10,000	С	10,000	С
TOLUIDINE, M-	108-44-1	1,200	G	5,700	G	10,000	С
TOLUIDINE, O-	95-53-4	1,200	G	5,700	G	10,000	С
TOLUIDINE, P-	106-49-0	620	G	3,000	G	190,000	C
TOXAPHENE	8001-35-2	17	G	83	G	190,000	C
TRIALLATE	2303-17-5	[2,900] 26	G	[10,000]	[C]	10,000	С
				130	<u>G</u>	0.000	- N.I.
TRIBROMOMETHANE (BROMOFORM)	75-25-2	[410] 400	N_	2,000	N	2,300	N
TRICHLORO-1,2,2-TRIFLUOROETHANE, 1,1,2-	76-13-1	10,000	<u> </u>	10,000	C	10,000	C
TRICHLOROACETIC ACID	76-03-9	270	G	1,300	G	190,000	C
TRICHLOROBENZENE, 1,2,4-	120-82-1	[640] <u>39</u>	[G] <u>N</u>	[3,100] <u>160</u>	[G] <u>N</u>	[10,000] <u>190</u>	N
TRICHLOROBENZENE, 1,3,5-	108-70-3	[1,300] <u>46</u>	[G] <u>N</u>	[19,000] <u>190</u>	[G] <u>N</u>	[190,000] <u>230</u>	[C] N
TRICHLOROETHANE, 1,1,1-	71-55-6	10,000	С	10,000	С	10,000	С
TRICHLOROETHANE, 1,1,2-	79-00-5	[4] 3.8	N	16	N	18	N
TRICHLOROETHYLENE (TCE)	79-01-6	38	N	160	N	180	N
TRICHLOROPHENOL, 2,4,5-	95-95-4	22,000	G	190,000	Ç	190,000	С
TRICHLOROPHENOL, 2,4,6-	88-06-2	220	G	3,200	G	190,000	С
TRICHLOROPHENOXYACETIC ACID, 2,4,5- (2,4,5-T)	93-76-5	2,200	G	32,000	G	190,000	C

All concentrations in mg/kg G – Ingestion N- Inhalation

C- Cap

Appendix A

Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil

A. Direct Contact Numeric Values

	(0)			No.	onresi	dential	
REGULATED SUBSTANCE	CASRN	Resident 0-15 fee		Surface Soil 0-2 fee	_	Subsurfa Soil 2-15 fe	
TRICHLOROPHENOXYPROPIONIC ACID, 2,4,5-(2,4,5-TP)(SILVEX)	93-72-1	1,800	G	26,000	G	190,000	С
TRICHLOROPROPANE, 1,1,2-	598-77-6	1,100	G	10,000	С	10,000	С
TRICHLOROPROPANE, 1,2,3-	96-18-4	0.14	G	3.0	G	[28] 27	N
TRICHLOROPROPENE, 1,2,3-	96-19-5-	5.7	-N-	24	-N-	27	Ν-
TRIETHYLAMINE	121-44-8	130	N	[560] <u>550</u>	N	[640] 630	N
TRIETHYLENE GLYCOL	112-27-6	10,000	С	10,000	С	10,000	С
TRIFLURALIN	1582-09-8	1,700	G	12,000	G	190,000	С
TRIMETHYLBENZENE, 1,3,4-	95-63-6	[130]	N	[560]	N	[640]	N
(TRIMETHYLBENZENE, 1,2,4-)		1,100		4,700		5,400	
TRIMETHYLBENZENE, 1,3,5-	108-67-8	[2,200] 1,100	[G]	[10,000] 4,700	[C] N	[10,000] 5,400	[C]
TRINITROGLYCEROL (NITROGLYCERIN)	55-63-0	22	G	320	G	10,000	Ĉ
TRINITROTOLUENE, 2,4,6-	118-96-7	110	G	1,600	G	190,000	C
VINYL ACETATE	108-05-4	[3,900] 3,800	N	10,000	C	10,000	Ċ
VINYL BROMIDE (BROMOETHENE)	593-60-2	14	N	70	N	80	N
VINYL CHLORIDE	75-01-4	[0.9] <u>0.93</u>	G	61	G	[280] 290	N
WARFARIN	81-81-2	66	G	960	G	190,000	С
XYLENES (TOTAL)	1330-20-7	1,900	N	[8,000] <u>7,900</u>	N	9,100	N
ZINEB	12122-67-7	11,000	G	160,000	G	190,000	С

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

Company Comp	j					Used	Used Aguifers				L					
Control Cont				TDS < 250	10 mg/L			TDS > 25	500 mg/L			Nonus	e Aquirers		Soil	
100 X Generic 1250 12,1001 E 380 4,700 E 380 E 380 4,700 E 380 E 380 4,700 E 380 4,700 E 380 4,700 E 380	0	-	Resi	dential	Nonre	sidential	Resi	dential	Nonre	sidentlal	Resi	dential	Nonre	Nonresidential	Buffer	
1250 13,100 E 380 4,700 E 380 4,700 E 380 4,700 E 1,600 18,000	Š .	<u> </u>	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	(feet)	
12800		33-32-9	[250] 210	_	380	$\overline{}$		-	380	-				-	15	
13.801 14.01 0.5 14.01	``	8-96-80	[250]		<u> </u>				1,600				9,	 	15	- 1
13,800	ဗ္ကြိ	560-19-1	[8.4]	 	[39]	_			.E.		1		_	[4.6] 1.4	¥	
13,8801		75-07-0	1.9	1	7.9	_		Ι-	790		1		E 7.9	0.96 E	NA	
13 1.5 E 5.3 6 E 1.300 150 E 5.300 600 E 130 15 E 130 15 E 130 15 E 1350 10.000 1		 	[3,800] 3,100									_	10,000	[10,00 C 0] C 0] C 0] C 0] C 0] C 0] D 0] D	¥ Z	
		75-05-8	13	1	L	1	╄	Η-	┡			-	Н	-	ΑN	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	98-86-2	[420]		_		-		Ψ.				E [1,200] 970	[640] E	₹ Z	
0.0042 0.00647 E 0.18 0.002 E 0.42 0.047 E 1.8 0.2 E 0.043 E 0.043 E 0.033 E 0.013 E 0.013 E 0.013 E 0.014 E 0.027 E 0.			[0.019]		_	t	<u> </u>				-		E [89] <u>72</u>	[370] E	20	
0.019 0.0033 E 0.25 0.03 E 1.9 0.03 E 25 4.3 E 0.019 0.0033 E 0.01 E 0.01 E 0.02 E 21 3.9 E 88 16 E 21 3.9 E 0.07 0.07 E 0.05 E 20 7.7 E 20 7.7 E 20 7.7 E 0.07 E 0.0 0.0 E 0.0 0.0 E 0.0 7.7 E 0.0 7.7 E 0.0 1 E 0.0 1 E 0.0 7.7 E 0.0 1 E 0.0 7.7 E 0.0 0.0 E 30 0.0 E 0.0 0.0 E 0.0 0.0 E 0.0		+	0.0042	1	╄		L	1		Н	Ш	Н		\rightarrow	Ϋ́	
0.071 0.039 E 0.88 0.16 E 21 3.9 E 88 16 E 21 3.9 E 36 16 E 21 3.9 E 37 5.1 E 7.2 1 E 7.2 1 E 7.7 E 0.077 E 0.077 E 0.077 E 20 7.7 E 0.077 E 0.077 E 20 7.7 E 0.077 E 0.077 E 0.077 E 20 7.7 E 0.077 E 0.027 E 300 E 40 4.5 E 0.027 E 0.027 E 0.027 E 0.045 E 0.045 E 0.045 E		1	0.019			1 1		Н		\vdash	\dashv		Ö		¥	Т
0.072 0.01 E 0.37 0.051 E 7.2 1 E 37 5.1 E 7.2 1 E 7.7 E 7.7 E 7.7 E 0.07 E 0.3 0.05 E 0.05 E 30 5 E 30 5 E 300 50 E 300 E 300 50 E 300 E 300 E 300 E 300 E 300 E <t< td=""><td>ı</td><td>79-10-7</td><td>0.21</td><td>-</td><td></td><td></td><td>,</td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td>¥N.</td><td>Т</td></t<>	ı	79-10-7	0.21	-			,			_		_			¥N.	Т
0.2 0.077 E 20 7.7 E 0.02 0.077 E 0.3 0.05 E 30 5 E 30 5 E 300 50 E 5 E 30 50 E 30 5 E 300 50 E 300 E 300 E 300 E 50 E 50	ı	107-13-1	0.072	Н	0.37	П		1 E		-1			\perp	-1	¥:	Т
0.3 0.05 E 30 5 E 30 5 E 30 50 E 30 50 E 30 50 E 300 50 E 0.027 E 0.027 E 0.045 E 1.0 4.5 E 4.0 4.5 E 0.045 E 0.045 E 1.0 1	-	5972-60-8	0.5					\neg		_		Т		-	¥.	Т
0.2 0.027 E 20 2.7 E 20 2.7 E 0.2 0.027 E 0.4 0.045 E 0.045 E 40 4.5 E 4.0 4.5 E 0.045 E 10.004 [0.52] E 0.045 E [0.43] [52] 46 E [2.0] [240] E 2 240 E 0.0038 0.0046 1.9 0.38 0.03 E 191 E 2 240 E 0.021 0.0025 E 0.006 E 0.026 E 191 B.8 1 E 240 E 0.023 0.0024 E 0.01 E 2.1 0.25 E 191 B.8 1 E 2.40 E 0.027 E 6.05 E 6.05 E 6.05 E 6.5 E 6.5 E 6.5 E 6.5 <		116-06-3	0.3			_		_		\neg		_			¥.	т
0.4 0.045 E 40 4.5 E 40 4.5 E 40 4.5 E 40 4.5 E 0.045 E 10.004 10.521 E 10.016 1.9 1.9 E 1.0 1.20 E 2.40 E 0.0038 0.0045 E 0.016 1.9 0.016 E 2.1 0.25 E 191 8.8 1 E 2.1 0.25 E 0.0021 E 6.5 E 6.5 E 600 650 E 600 650 E 6.5 E 10.0012 E 0.016 E 10.35 10.14 E 1.6 6.5 E		1646-88-4	0.2			_1				\neg	_	$\overline{}$		_	(Z	т
10.004 10.52 E 10.02 1.3 E 10.43 E 12.14 E 12.03 E 12.03 E 2.03 E 2.03 E 130 E 2.040 E 2.03 E 130 E 2.040 E 2.003 E 2.05 E 2		1646-87-3	0.4			\neg		\neg		\neg		一	o O	\dashv	Ž	т
0.021 0.025 E 0.025 E 10 0.25 E 10 0.25 E 0.025 E 10 0.25 E 0.025	ĺ	309-00-2	[0.004	ľ			<u> </u>		<u></u>				 	240 E	 9	
6 6.5 E 6.5 E 600 650 E 600 650 E 6.5 E [0.003 [0.0014] E [0.016] [0.006] E [0.35] [0.14] E [1.6] [0.62] E [3.5] [1.4] E 5] 0.0012 3.1 2] 0.31 0.12 1.3 0.5 E 1.2 1.2		107-18 ₋₆	0.0030			-	_	1	\bot	-		1-	E [9] 8.8	1 E	Ν	П
[0.003 [0.0014] E [0.016 [0.006 E [0.35] [0.14] E [1.6] [0.62] E [3.5] [1.4] E [1.4] E [3.5] [0.0012	ļ	R34-12-8	9	+	-	1			┡	 		_	E 6	9.5 E	ΑN	
0.0012 1.3 0.31 0.12 1.3 0.3		92-67-1	[0.003	1	-	+	은 `						E [16] 13	[6.2] <u>5</u> E	AN	
0.013			5]	0,0012	0.013	0.005	0.37	71.0	<u>?</u>	<u> </u>	3	7 1		÷83		

All concentrations in mg/kg E - Number calculated by the soil to groundwater equation is section 250.308

C-Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		Soll	Buffer	Distance (feet)	¥.	AN	AN	NA	H	NA A	AN	A A	20	Ą	ΑΝ	ഹ	-	ιo .	5	က	Ų,	2	A A		30	
Г				0	Ш	ш	ш	ш	Ш	ш	m	ш	ш	ш	ш	ш		ш	Ш	ш	ш	ш	ш		ш	
			Nonresidential	Generic Value	[150] 120	360	24	0.52	350	0.13	[40] 17	25	[970] 530	2.9	-13	[2,000]		096	860	170	180	610	[9,000]	חחפיי	[63]	5.7
	Monnes Aguifare	ciolinho	Nonre	100 X GW MSC	[360]	3,000	200	0.88	9.9	0.3	[35] <u>15</u>	300	[200] 110	20	20	[1.5]	!	1.1	0.38	0.12	0.026	0.055	[47,000	39.000	[26]	2.1
ı	0	2		ن د	Ш	ш	Ш	Ε	Ε	E	Ш	Ш	ш	ш	Ш	Ш		ш	Ш	Ш	ш	ш	Ш		Ш	
	Non		Residential	Generic Value	[32] 28	360	24	0.12	350	0.13	[15] 5.9	57	[970] 130	2.9	13	[130]	ļ. e:	096	860	170	180	610	[3,200]	7,00	[14]	<u> </u>
			Resi	100 X GW MSC	[78]	3,000	200	0.21	9.9	0.3	[13] 5.2	300	[200] 27	20	20	[0.098]		1.1	0.38	0.12	0.026	0.055	[17,000	14,000	[2'6]	0
Г	1				Ш	ပ	Ш	ш	Ш	ш	ш	ш	ш	ш	ш	ш		Ш	Ш	Ш	ш.	ш	ш		ш	
		·	Nonresidential	Generic Value	[15] 12	10,000	2,400	52	350	13	[3,600] 1,700	5.7	970	290	13	[200] 160		960	860	170	180	610	52,000		[6.3]	
		2500 mg/L	Nonre	100 X GW MSC	[36] 29	10,000	20,000	88	6.6	30	[3,200] 1,500	30	200	2,000	22	[0.15]		1.1	0.38	0.12	0.026	0.055	190,00		[3] <u>2.1</u>	
ı					ш	ပ	ш	Ш	Ш	Ш	Ш	Ш	Ш	П	Ш	Ш		ш	Ш	ш	Ш	Ш	ш		ш	
		TDS >	Residential	Generic Value	[3.2]	10,000	2,400	12	350	13	[1,500] 590	5.7	970	290	. 13	[13] 12		096	860	170	180	610	52,000		[1.4]	<u> </u>
	Usea Aquirers	٠	Res	100 X GW MSC	[8]	10,000	20,000	21	9.9	30	[1,300] 520	30	200	2,000	20	[0.0098]	0.0092	1.1	0.38	0.12	0.026	990'0	190,00	o	[0.56]	0.5
	3		_	0	ш	Ш	Ш	Ш	Ш	Ш	ш	ш	ш	E	Ш	ш		ш	E	Ш	E	Ш	ш		Ш	
	Ose		sidential	Generic Value	[0.15] 0.12	360	24	0.52	350	0.13	[40] 17	0.057	[970] 530	2.9	0.13	[2] 1.6		[430] 340	46	170	180	610	[9,000]	200	[0.063]	0.051
		TDS ≤ 2500 mg/L	Nonres	100 X GW MSC	[0.36] 0.29	3,000	200	0.88	9.9	0.3	[35]	0.3	[200] 110	20	0.5	[0.001 51	0.001	[0.49] 0.39	0.02	0.12	0.026	0.055	[47,00	39.00	[0.026	0.021
		220		0	យ	Ш	ш	Ш	Ш		Ш	Ш	ш	Щ	Ш	ш		ш	Ш	Ш	В	ш	ш		Ш	
		TDS ≤	Residential	Generic Value	[0.032] 0.028	360	24	0.12	350	0.13	[15] 5.9	0.057	[970] 130	2.9	0.13	[0.13] 0.12		[28] 26	46	[26] <u>25</u>	180	[210] 200	[3,200]		[0.014]	0.012
		,	Res	100 X GW MSC	[0.078] 0.069	3,000	200	0.21	9.9	0.3	[13]	0.3	[200]	20	0.5	00.00]	0.0000	[0.032] 0.03	0.02	[0.019] 0.018	0.026	[0.019] 0.018	[17,00	14,000	1	0.0056
			CASRN		61-82-5	7664-41-7	7773-06-0	62-53-3	120-12-7	1912-24-9	86-50-0	114-26-1	17804-35-2	25057-89-0	71-43-2	92-87-5		56-55-3	50-32-8	202-88-2	191-24-2	207-08-9	65-85-0		2-20-86	
			REGULATED	SUBSTANCE	AMITROLE	AMMONIA	AMMONIUM SULFAMATE	ANILINE	ANTHRACENE	ATRAZINE	AZINPHOS-METHYL (GUTHION)	BAYGON (PROPOXUR)	BENOMYL	BENTAZON	BENZENE	BENZIDINE	10	BENZO[A]ANTHRACENE	BENZOJAJPYRENE	BENZO[B]FLUORANTHENE	BENZO(GHIJPERYLENE	BENZOKJFLUORANTHENE	BENZOIC ACID		BENZOTRICHLORIDE	

All concentrations in mg/kg E - Number calculated by the soil to groundwater equation is section 250.308

C - Cap
NA - The soil buffer distance option is not available for this substance
[THMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs - The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil		Generic (feet)		[430] E NA 350	30 E NA	0.0076 E NA	[250] E 20 200	59 E 15	72 E 20	[3,1 00] E 20 150	[9.2] E NA	2.3 E NA	800 E NA	0.006 E NA	ш	ш	1.8 E N	ш	ш	2.7 E NA	ш	ш	360 E 15
	Aquifers	Nonresidential	100 X GW	MSC	[1,200]	51	\vdash	[54] 43	10	20	[720] [[35	[35] 28	7.6	3,000	0.04		12,000	7	⇥	6	80	100	[230] 2.6	89
	Nonuse Aquifers	ntial	Generic	Value	[150] E 130	5.9 E	0.0015 E	[55] <u>46</u> E	59 E	72 E	[3,100] E	[3.4] E 2.6	0.45 E	800 E	[0.001] E 0.0012	6,300 E		1.8 E	0.0047 E	\neg	2.7 E	54 E	[71] E 0,54	360 E
		Residential	100 X GW	MSC	[420] 350	۰۰ 10	0.012 0	[12] <u>10</u>	9	20	[720] [5 8.4	[13] 10	1.5	3,000	0.0079	29	12,000 4	7	0.006	Б	8	100	[83] 0.63	8
		dential	<u> </u>	Value	10,000 C	30 E	0.076 E	(25) <u>20</u> E	59 E	7.2 E	[3,100] E 150	[920] E 760	2.3 E	800 E	0.006 E	6,300 E	-	180 E	0.47 臣	160 E	270 E	54 E	[11,000 E] 220	360 E
	2500 mg/L	Nonresidential	100 X SW SW	MSC	10,000	5	0.63	[5.4] 	9	2	[720] 35	[3,500] 2,900	7.6	3,000	0.04	29	12,000	200	9.0	900	800	100	[13,00 [0] <u>260</u>	8
	TDS > 250		Generic	Value	10,000 C	5.9 E	0.015 E	[5.5] 4.6	[24] <u>21</u> E	7.2 E	[3,100] E	[340] E 260	0.45 E	800 E	[0.001] E 0.0012	6,300 E	46,000 E	180 E	0.47 E	160 E	270 E	54 E	[7,100] E	360 E
- Gradien	a la la la	Residential	100 X GW	MSC	10,000	2	[0.1] 0.12		[4.1]	2	[720] [8.4	[1,300]	1.5	3,000	0.0079	29	12,000	002	9.0	006	800	100	[8,300] 63	80
A beat	Osen Addilers	idential	_	Value	[430] E	0.3 E	 	[0.25] E	[1.1] 0.88	0.072 E		[9.2] E	0.023 E	8	0,000 6	130 E	[2,200] E 1,900	1.8 E	0.0047 E	1.6 E	2.7 E	0.54 E	[200] E 2.2	13601 E
	10 mg/L	Nonres	100 X SW	MSC	1,200	0.51	0.006	[0.054 0.043	0.15	0 02	[43] 0.35	[35]	0.0	30	0.000	9.0	[580]	7	900.0	o	80	-	[230]	1812.6
	TDS ≤ 2500 mg/L	Residential	Generic	Value	[150] E	0.059 E	1-	[0.055] E 0.046	[0.24] E	0.072 E	-	[3.4] <u>2.6</u> E	0.0045 E	8	0.000012 E	130 E	[810] 660	1.8 匠	0.0047 E	1.6 E	2.7 €	0.54 E	-	13601 28 E
		Resid	100 X	MSC	[420]	6	-	[0.012] 0.01	[0.041]	000	1	[13] 10	0.015	30	0.0000 0	9.0	[210] 170	7	9000	6	89	-	[83]	<u> </u>
			CASKN		100-51-6	100-44-7	57-57-8	319-84-6	319-85-7	58-89-9	92-52-4	111-91-1	111-44-4	108-60-1	542-88-1	117-81-7	80-05-7	314-40-9	108-86-1	74-97-5	75-27-4	74-83-9	1689-84-5	1689-99-2
	40	REGULATED	SUBSTANCE		BENZYL ALCOHOL	BENZYI CHI ORIDE	BETA PROPIOLACTONE	внс, агрна	BHC, BETA-	BHC GAMMA (LINDANE)	BIPHENYL, 1,1-	BIS(2-CHLOROETHOXY) METHANE	BIS(2-	BIS(2-CHLORO-	BIS(CHLOROMETHYL)ETHER	BIS(2-ETHYLHEXYL) PHTHAI ATF	BISPHENOL A	BROMACIL	BROMOBENZENE	BROMOCHLOROMETHANE	BROMODICHLORO METHANE (THM)	BROMOMETHANE	BROMOXYNIL	BROMOXYNIL OCTANOATE

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308

C – Cap NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soli
B. Soll to Groundwater Numeric Values¹

	-	E SOIL		(feet)	AA	Ϋ́	30	1. 3.	30	30	10	Ϋ́Z	A'A	15	NA	NA	AN	NA	NA	10,	NA	Ϋ́	NA A	[NA]
Г		Т		Ü	ш	ш	Ш	ш	Ш	ш	ပ	Ш	ш	Ш	Е	Ш	Ш	Ш	Ш	Е	ш	ш	ш	ш-
		Monroeldondial	SIGNIFICA	Generic Value	[4.1] 19	[1,400] 1,200	58	[3,700] 3,100	[2,800] 2,300	[2,200] 1,800	10,000	31	2,000	[110] 89	0.87	530	2.6	53	1.6	1,400	7,300	20	[0.1] 0.12	[110]
	Nonuse Aquifers	Monro	PICA	100 X GW MSC	[10] 45	[10,000] 9,700	40	[580] 490	[1,200] 970	[1,200] 970	270	50	12,000	[17] <u>14</u>	4	620	5	70	10	5.6	10,000	88	[1.1] 1	[350]
	lse /	Г	T	<u>.</u>	Ш	ш	Ш	ш	Ш	Ш	O	Е	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	ш	ш	ш	_=_
	Non	Doctdonetal		Generic Value	[0.86] 4.5	[500] 420	28	[1,300] 1,100	[980] [820	[760] 630	10,000	31	7,000	[24] 21	0.87	130	2.6	53	1.6	1,400	1,800	9.4 9.	0.029	[66]
		Pood	1001	100 X GW MSC	[2.1]	[4,200] 3,500	40	[210] 170	[420] 350	[420] 350	270	20	12,000	[4] <u>3.3</u>	4	150	C	20	10	5.6	10,000	27	0.24	[130]
Г	Τ	T	1	0	ш	ပ	Ш	ш	ш	ш	O	ш	ш	ш	Ш	ပ	ш	Ш	Ш	ш	ပ	ш	ш	 m
		Nonresidential	arcallina	Generic Value	[4.1] 19	10,000	5,800	9,500	4,000	5,400	10,000	31	7,000	760	87	10,000	26	5,300	160	1,400	10,000	20	[13] <u>12</u>	[11.0]
	1/2 m 00	Approprie		100 X GW MSC	[10] 45	10,000	4,000	1,500	1,700	3,000	270	20	12,000	120	400	10,000	90	7,000	1,000	5.6	10,000	88	[110] 100	[32]
	× 25!		T	ပ	Е	Ш	Ш	ш	ш	ш	ပ	ш	ш	ш	ш	ပ	ш	ш	Ш	Ш	ပ	w	Ш	-ш-
	TDG	Decidential	T T T T T T T T T T T T T T T T T T T	Generic Value	[0.86] 4.5	[5,000] 4,200	5,800	9,500	4,000	5,400	10,000	31	000'2	760	87	10,000	56	5,300	160	1,400	10,000	4.9	2.9	[3:9]
Used Aguifers		Dog	200	100 X GW MSC	[2.1] 11	10,000	4,000	1,500	1,700	3,000	270	90	12,000	120	400	10,000	20	7,000	1,000	5.6	10,000	21	24	[13]
A D		-		<u>0</u> ,	Ш	Ш	Ш	ш	ш	ш	ပ	Ш	ш	ш -	ш		Ш	ш	Ш	Ш	ш	ш	ш	 III
nsn.		refdential		Generic Value	[0.041] 0.19	[140] 120	58	[3,700] 3,100	[2,800] 2,300	[2,200]	10,000	31	[700] 570	[110]	0.87	530	0.26	53	1.6	49	7,300	0.2	[0.13] 0.12	[0.11]
	TDS < 2500 mail	Nonrae		GW MSC	[0.1] 0.45	[1,200] 970	40	[580] 490	[1,200] <u>970</u>	1,200	[180] 140	20	[1,200] <u>970</u>	[17]	4	620	0.5	70	9	0.2	10,00 0	0.88	[1.1] 1	[0.35]
	250			U	Ш	ш	Ш.	ш	Ш	Ш	Ш	3	Ш	ш	Ш.				Ш	Ш	ш	ш_	ш	
	> SUL	Recidential		Generic Value	[0.0086] 0.045	[50] 42	58	[1,300] 1,100	[980] 820	[760] 630	[3,200] 2,900	[20] 17	[250] 210	[24] 21	0.87	130	0.26	53	1.6	49	1,800	0.049	0.029	[0.039]
		Bed		100 X GW MSC	[0.021] 0.11	[420] 350	40	[210] 170	[420] 350	[420] 350	[38] <u>34</u>	[32] 28	[420] 350	[3.7]	4	150	0.5	20	5	0.2	10,000	0.21	0.24	[0.13]
			CASRN	36	106-99-0	71-36-3	2008-41-5	104-51-8	135-98-8	9-90-86	85-68-7	133-06-2	63-25-2	86-74-8	1563-66-2	75-15-0	56-23-5	5234-68-4	133-90-4	57-74-9	75-68-3	107-05-1	107-20-0	[532-27-4]
		REGULATED	SILVETOCIO		BUTADIENE, 1,3-	BUTYL ALCOHOL, N-	BUTYLATE	BUTYLBENZENE, N-	BUTYLBENZENE, SEC-	BUTYLBENZENE, TERT-	BUTYLBENZYL PHTHALATE	CAPTAN	CARBARYL	CARBAZOLE	CARBOFURAN	CARBON DISULFIDE	CARBON TETRACHLORIDE	CARBOXIN	CHLORAMBEN	CHLORDANE	CHLORO-1,1- DIFLUOROETHANE, 1-	CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)	CHLOROACETALDEHYDE	[CHLOROACETOPHENONE, 2-]

¹ For other options see Section 250.308

All concentrations in mg/kg E - Number calculated by the soil to groundwater equation is section 250.308 C - Cap

NA - The soil buffer distance option is not available for this substance [THMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs - The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

Γ		L	8			\top	- /			81				15			1				-		
	Soil	Buffer	Distance (feet)		₹ Z	¥	5	9	¥ V	¥ Z	Y Y	Ϋ́	15	A A	¥	¥	₹	, F	္က	¥	5	ž	5
Γ			u		Ш	Ш	ш	ш	ш	ပ	_шо	Ш	ш	ш	ш	ш	ш	и -	ш	ш	ш	Ш	ш
	ļ	Nonresidential	Generic	Value	[2.1] 1.8	610	8,600	[730] 610	250	10,000	[2,600] 10,000	20	[20,00 0] 17,000	[16]	4.4	2	67	150	ଷ	무	2.3	[80] 26	820
	Nonuse Aquiters	Nonre	100 X GW	MSC	[1.7] 1.4	1,000	1,300	[470] 390	800	10,000	10,000	80	[930] 780	[12] 1.8	4	8.3	88	[60] <u>16</u>	10	10	0.2	[580] 190	SS .
	Se /	П	- 0		Ш	Ш	Ш	Ш	ш	ш	-ш-О	Ш	ш	ш	Е	ш	Ш	ш	ш	ш	ш	ш	ш
	Non	Residential	Generic	Value	[0.47] 0.42	610	[4,400] 3,900	[270] 220	250	2,800	[540] 10,000	20	[7,000] <u>6,000</u>	[5.5] 0.55	4.4	0.38	16	[64] 9.7	50	10	2.3	[29] 9.6	820
		Resi	100 X	MSC	[0.37] 0.33	1,000	[660] 590	[170]	800	10,000	[2,500] 10,000	8	[330] <u>280</u>	[4.2] 0.42	4	1.6	21	[24] 3.8	10	10	0.2	[210] 69	20
Γ	Π				Ш	Е	ш	ပ	ш	ပ	—ш— О	Ш	Ш	ш	E	ΨĮ	凹	E	Ш	Е	Ш	Щ	Е
		Nonresidential	Generic	Value	[210] 180	610	[2,000] 1,700	10,000	250	10,000	[2,600] 10,000	200	26,000	[1,600]	440	. 2	6,700	150	2,000	1,000	230	2,600	820
	TDS > 2500 mg/L	Nonres	100 X	MSC	[170] 140	1,000	[310] 250	10,000	800	10,000	10,000	800	1,200	[1,200] 180	400	8.3	8,800	90	1,000	1,000	20	19,000	20
1	182	r			ш	ш	ш	O	Е	ပ	—ш — О	ш	ш	ш	Ш	ш	ш	Ш	Е	ш	Ш	ш	ш
2	TDS >	Residential	Generic	Value	[47] 42	610	[440] 390	10,000	250	10,000	[540] 10,000	200	26,000	[550] 55	440	0.38	1,600	150	2,000	1,000	230	[2,600] 960	820
Iland Amiliars		Resid	100 X	MSC	[37] 33	1,000	[66] 59	10,000	800	10,000	[2,500] 10,000	800	1,200	[420] 42	400	1.6	2,100	9	1,000	1,000	20	[19,000] 6,900	20
١		T	<u> </u>		Ш	ш	ш	ш	Ш	ပ	ш	ш	ш	ш	Ш	ш	Ш	ш	Ш	Ш	Ш	Ш	ш
Ilaail		sidential		Value	[2.1] 1.8	9.1	[20] 17	[730] 610	2.5	10,000	[26] 1.900	2	[20,00 0] 17,000	[16] 2.4		0.02	29	[150] 41	20	10	2.3	[80] <u>26</u>	110
	TDS < 2500 ma/L	Nonres	700 X	MSC	[1.7]	9	[3.1]	[470] 390	80	10,00	[120] <u>8,800</u>	60	[930] 780	[12]	4	0.083	88	[60] 16	2	9	0.2	[580] 190	7
١	250		١.,		Ш	Ш	ш	ш.	Ш	ш	ш	ш	1	ш	Ш	4	-	Е	ш	+=	1-	ш	ш
	TDS <	Residential	Generic	Value	[0.47]	6.1	[4.4] 3.9	[270]	2.5	2,800	[5.4] 450	6	000'9 (°000)	[5.5]	4.4	0.0038	16	[61] 9.7	20	10	2.3	[29] 9.6	110
		Res	100 X	MSC	[0.37]	9	[0.66]	[170]	80	10,000	[25] 2,100	α	[330]	[4.2]	4	0.016	21	[24]	10	10	0.2	[210] 69	7
			CASKN	-	106-47-8	108-90-7	510-15-6	109-69-3	124-48-1	75-45-6	75-00-3	67.66.3	91-58-7	100-00-5	95-57-8	126-99-8	75-29-6	1897-45-6	95-49-8	106-43-4	2921-88-2	64902-72-3	1861-32-1
	k	REGULATED	SUBSTANCE		CHLOROANILINE, P.	CHLOROBENZENE	CHLOROBENZILATE	CHLOROBUTANE, 1-	CHLORODIBROMO METHANE (THM)	CHLORODIFLUORO METHANE (THM)	CHLOROETHANE	CUI OBOCOPM (THM)	CHLORONAPHTHALENE, 2-	CHLORONITROBENZENE, P.	CHLOROPHENOL. 2-	CHLOROPRENE	CHLOROPROPANE, 2-	CHLOROTHALONIL	CHLOROTOLUENE, O-	CHI OROTOL UENE. P-	CHLORPYRIFOS	CHLORSULFURON	CHLORTHAL-DIMETHYL (DACTHAL) (DCPA)

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308 C – Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soli
B. Soli to Groundwater Numeric Values¹

	Soll	Buffer	Distance (feet)	က	A A	AN (ž	Y	,	N A	30	¥ Z	¥ ¥	15	N.	NA	NA	10	20	10
H		ŀ		Ш	Ш	ш	ш	U		ш	ш	ш	ш	ပ	Ш	ш	ш	ш	ш	ш
		宣	Generic Value	230	_										\neg	-	170	33		
		Nonresidential	Generi Value	2	9,200	[700] 59	[9,600] 8,100	10,000		[14,00 0] 11,000	[2,500] <u>2,000</u>	[2.3]	[2.3]	10,000	0.061	006'9	17	(-)	[270] 15,000	1,800
;	Nonuse Aquiters	Nonre	100 X GW MSC	0.19	10,000	[930] 78	[58,000] 49,000	10,000		[58,000] 49,000	[1,200] <u>970</u>	[18] 14	[18] 14	5,000	0.1	5,300	620	0.1	[88] 4.900	16
L	88	Г	O .	Ш	ш	Ш	ш	O		Щ	ш.	ш	ш	ပ	Ш	Ш	Ш	Ш	ш	ш
	Non	Residential	Generic Value	230	2,300	[250] 21	[3,500] 2,800	10,000		[4,900] 4,000	[870]	0.43	0.48	10,000	0.061	1,700	41	33	[96] 5.300	1,800
		Resid	100 X GW MSC	0.19	10,000	[330] 28	[21,000] 17,000	10,000		[21,000] 17,000	[420] 350	[3.8]	[3.8]	5,000	0.1	1,300	150	0.1	[31] 1,700	16
Г		Н		Ш	ш	ш	Ш	 υ	Ш	ш ·	U	ш	ш	ပ	ш	Ш	O	Ш	_m_o	Ш
	,	Nonresidential	Generic Value	230	9,200	[70] <u>59</u>	[9,600] 8,100	[10,000] <u>9,700</u>		1.100	190,00 0	[2.3]	[2.3]	10,000	6.1	7,200	10,000	33	27,000 1 190,00 0	1,800
	TDS > 2500 mg/L	Nonres	100 X GW MSC	0.19	10,000	[93] <u>78</u>	[58,00 0]49,0 00	10,000		[5,800] 4,900	[120,0 00] 97,000	[18] 14	[18] 14	2,000	10	5,500	10,000	0.1	[8,800] 190,00 0	16
	250		45	Ш	Ш	Ш	Ш	ш	\dashv	Ш	ш	ш	Ш	ပ	ш	Щ	Ш	Ш	-ш-о	Ш
	TDS >	Residential	Generic Value	230	2,300	[25] <u>21</u>	[3,500] <u>2,800</u>	[4,100] 3,400		[490] 400	[87,000] 72,000	[0.48]	[0.48] 0.43	10,000	6.1	7,200	4,100	33	[9,600] 190,00 0	1,800
Used Aquifers		Resid	100 X GW MSC	0.19	10,000	[33] <u>28</u>	[21,000] 17,000	10,000		[2,100] 1,700	[42,000] 35.000	[3.8]	[3.8]	5,000	10	5,500	10,000	0.1	[3,100] 170,00 0	16
ᇢ			o '	Ш	Ш	Е	ш	ш		ш	ш	ш	Ш	ш	Ш	ш	ш	Ш	Ш	ш
Use		sidential	Generic Value	230	92	[0.7] 0.59	[96] <u>81</u>	[110] 97		74 <u>1</u>	[2,500] 2,000	[0.023] 0.018	[0.023] 0.018	2,500	0.061	9000	170	33	[270] <u>15,000</u>	[150] 120
	TDS ≤ 2500 mg/L	Nonres	100 X GW MSC	0.19	530	[0.93] 0.78	[580] 490	[580] 490	,	[58] [49]	[1,200] <u>970</u>	[0.18]	[0.18] 0.14	350	0.1	5,300	620	0.1	[88] 4,900	4.1 4.1
	250			Ш	Ш	Ш	ш	ш		ш	ш	Ш	Ш	ш	Ш	Ш	Ш	ш	ш	ш
	TDS≤	Residential	Generic Value	[230] 220	23	[0.25] 0.21	[35] <u>28</u>	[41] 34		[4.9]	[870] 720	[0.0048]	[0.0048] 0.0043	009	0.061	1,700	4	33	[96] 5,300	[33] 30
		Res	100 X GW MSC	[0.19] 0.18	130	[0.33] 0.28	[210] 170	[210] 170		[21] 17	[420] 350	[0.038] 0,034	[0.038] 0.034	84	0.1	1,300	150	0.1	[34] 1,700	[0.3] 0.27
		CASRN		218-01-9	1319-77-3	534-52-1	95-48-7	108-39-4		106-44-5	29-20-2	4170-30-3	123-73-9	98-82-8	21725-46-2	110-82-7	108-94-1	68359-37-5	66215-27-8	72-54-8
		REGULATED	SUBSTANCE	CHRYSENE	CRESOL(S)	CRESOL, 4,6-DINITRO-O-	CRESOL, O- (2- METHYLPHENOL)	CRESOL, M- (3- METHYLPHENOL)		CRESOL, P- (4- METHYLPHENOL)	CRESOL, P-CHLORO-M-	CROTONALDEHYDE	CROTONALDEHYDE, TRANS-	CUMENE (ISOPROPYL BENZENE)	CYANAZINE	CYCLOHEXANE	CYCLOHEXANONE	CYFLUTHRIN	CYROMAZINE	DDD, 4,4*-

¹ For other options see Section 250.308

All concentrations in mg/kg $E \sim \mbox{Number calculated}$ by the soil to groundwater equation is section 250.308 C - Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soll	Buffer	(feet)	10	5		2		∢ Z	30	တ	15	A A	50	¥ Z	¥N	5 6	AN N	A N	¥ Z	_	
r		П		ш	Ш	1	راد	ш	Ш	Ш	ш	ш	ш	ш	ш	ш	U	ш	ш	ш	÷	ľ
		Nonresidential	Generic Value	870	330	\dashv	7	[2,300]	[17] 14	0.14	270	12,000	0.92	[490] 400		_		45	0.79	0.0034	= :	
	Nonuse Aquifers	Nonres	100 X GW MSC	4	0.55		10,000	[4,000] 4,000	[85] 68	0.1	0.06	450	2	[120] 97	0.5	320	10,000	400	တ	9000	97	
ı	3e /	П		ш	Ш		히	ш	ш	Ш	Ш	ш	ш	E	ш	ш	ပ	Ш	ш	Ш]
	Nonu	Residential	Generic Value	870	330		10,000	[700] 640	[3.6]	0.14	270	[12,00 0] 9,000	0.92	[170] 140	0.12	32	10,000	45	0.79	[0.000	0.000	
		Resid	100 X GW MSC	4	0.55		10,000	[1,200] 1,100	[18] 16	0.1	0.06	[450] 350	2	[42] <u>35</u>	0.5	84	10,000	400	9	0.0012		
Γ	Т	П		Ш	Ш		ပ	Ш	ш	Ш	Ш	ш	ш	Ш	ш	Ш	ပ	Ш	ш	ш]
		Nonresidential	Generic Value	870	330		10,000	[330] 260	[1.7] 1.4	14	270	12,000	0.92	8,200	0.12	140	10,000	4,500	79	0.34	*	
	TDS > 2500 mg/L	Nonres	100 X GW MSC	4	0.55		4,000	[560] 450	[8.5] <u>6.8</u>	10	0.06	450	2	2,000	0.5	320	10,000	40,000	900	9.0		
1	250			Ш	Ш		ပ	ш	ш	Ш	ш	ш	ш	ш	ш	ш	ပ	Ш	ш	ш		1
	TDS >	Residential	Generic Value	870	330	- I	10,000	[70] <u>64</u>	[0.36] 0.32	44	270	[11,000] <u>9,000</u>	0.92	8,200	0.12	32	10,000	4,500	62	[0.07]	000	
Head Aquifore	2515	Resid	100 X GW	4	0.55		4,000	[120] 110	1.8]	9	0.06	[420] 350	2	2,000	0.5	84	10,000	40,000	009	0.12		
{	[Ш	Ш		၁	ш	ш	ш	ш	ш	ш	ш	Е	E	Е	<u>iii</u>	ш	ш		4
		sidential	Generic Value	[220]	330		10,000	[3.3]	[0.017] 0.014	0.14	[270] 270	[310] 250	0.0092	[490] 400	0.0012	1.4	[4,900] 4,000	45	0.79	0.0034		
	TDS < 2500 mg/l	Nonresi	100 X GW MSC	[1] 0.8	0.55		40	[5.6] 4.5	[0.085 0.068	0	[0.06] 0.06	[12] 9.7	0.02	[120] 97	0.005	3.5	1970	\$ 6	9	900.0		
ı	250			Ш	Ш		ပ	Е	ш	Ш		ш	ш	Ш	ш	Ш	Ш	Ш	1	ш		4
	> SUL	Residential	Generic Value	[46] 41	[130]	110	10,000	[0.7] 0.64	[0.0036] 0.0032	0.14	[25] 23	[110] 90	0.0092	[170]	0.0012	0.32	1.400	45	0.79	0.00067	9	
		Res	100 X GW	[0.21]	10.21	0.19	40	[4.2]	[0.018] 0.016	0.1	[0.005 5] 0.0052	[4.2]	0.02	[42] 35	0.005	0.84	[420] 350	400	9	0.0012		
		0	CASKN	72-55-9	50-29-3	200	103-23-1	2303-16-4	95-80-7	333-41-5	53-70-3	132-64-9	96-12-8	106-37-6	106-93-4	74-95-3	84-74-2	1918-00-9	76-43-6	764-41-0		
		REGULATED	SUBSTANCE	DDE, 4,4'-	DDT 44"-		DI(2-ETHYLHEXYL)ADIPATE	DIALLATE	DIAMINOTOLUENE, 2,4-	DIAZINON	DIBENZO[A,H] ANTHRACENE	DIBENZOFURAN	DIBROMO-3- CHI OROBROPANE 12-	DIBROMOBENZENE, 1,4-	DIBROMOETHANE, 1,2-	DIBROMOMETHANE	DIBUTYL PHTHALATE, N-	DICAMBA	DICHLOROACETIC ACID	DICHLORO-2-BUTENE, 1,4-		

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308

C – Cap NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for hatoacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soll B. Soil to Groundwater Numeric Values¹

		Soll	Buffer	Distance (feet)	¥.	¥N	Ϋ́	30	#	Y Y	ΑN	ΑN	ΑĀ	NA.	AN	NA	ΑN	A	Ϋ́	AN A) N	A A	30	135		[NA]
ŀ					ш	Ш	Ш	Ш	Ш	U	Ш	Ш	Ш	ш	ш	Ш	ш	ш	w	ш	ш	ш	ш	ш		\vdash
			Nonresidential	Generic Value	0.0039	5,900	6,100	1,000	17,000	10,000	39	-	1.9	16	23	7.6	1,000	1,800	1.1	[61] 48	530	[0.28]	[1] 0,56	_	470	[NA]
	A	Nonuse Aquirers	Nonre	100 X GW MSC	0.006	000'9	6,000	750	310	10,000	160	S	7	70	100	20	2,000	7,000	5	[340]	2,000	[1.2] 0,94	[0.3]	1171 17		[NA]
1	1	se		ပ	Щ	Ш	Ш	Ш	ш	ပ	Ε	Ш	Ш	ш	ш	ш	ш	ш	Ш	ш	ш	ш	ш	Ш		
	1	Non	Residential	Generic Value	0.0007 8	5,900	6,100	1,000	[8,800] 7,700	10,000	5.5	- A	1.9	16	23	7.6	1,000	1,800	1.1	[13] <u>12</u>	530	[0.059] 0.052	[0,1] 0.13	[130]		[NA]
			Resi	100 X GW MSC	0.0012	000'9	000'9	750	[160] 140	10,000	31	5	7	70	100	20	2,000	7,000	ಬ	[73] 65	2,000	[0.25] 0.22	[0.1] 0.063	[4.6]	4.1	[NA]
ı		П	Π		ш	ш	ш	Щ	ш	ပ	Ш	ш	Ш.	ш	Ш	ш	Ш	ш	Ш	ш	Щ	ш	Ш	ш		
			Nonresidential	Generic Value	0.39	5,900	6,100	1,000	[4,200] 3,300	10,000	390	우	19	160	230	7.6	100	180	11	[61] 48	530	[28] <u>22</u>	56	[58] 47		[AN]
		2500 mg/L	Nonre	100 X GW MSC	9.0	000'9	6,000	750	[76] 🔯	10,000	1,600	20	70	200	1,000	20	200	700	50	[340] 270	2,000	[120] 94	26	[2.1]	1.7	[NA]
	,	25(່ວ	Ш	Ш	Ш	Ε	Е	ပ	ш	ш	ш	ш	ш	ш	Ш	ш	Ш	ш	ш	ш	Ш	ш		
		TDS	Residential	Generic Value	0.078	5,900	6,100	1,000	[880]	10,000	75	10	19	160	230	7.6	100	180	11	[13] 12	530	[5.9] 5.2	13	[13] 11	,	[NA]
	Used Aquifers		Resi	100 X GW MSC	0.12	9'000	000'9	750	[16] 14	10,000	310	20	02	002	1,000	20	200	200	20	[73] 65	2,000	[25] <u>22</u>	[6] <u>6.3</u>	[0.46]	0.41	[NA]
	ğ	,	1	ပ္ ့	Ш	ш	ш	m	Ш	Ш	-	Ш	Е		Ш	ш	Ε	ш	Ш	ш	ш	Ш	ш	ш		
	Use		sidential	Generic Value	0.0039	59	61	10	[42] 33	100	3.9	0.1	0.19	1.6	. 2.3	0.076	1	1.8	0.11	[0.61] 0.48	5.3	[0.28] 0.22	0.56	[0.58]	0.47	[NA]
		TDS ≤ 2500 mg/L	Nonres	100 X GW MSC	0.006	9	9	7.5	[0.76] 0.6	100	16	0.5	0.7	7	10	0.5	2	7	0.5	[3.4]	20	[1.2] 0.94	0.26	[0.021	0,017	[NA]
		250		5	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш		ш	w	Ш	ш	Ш		Э	ш	Е	ш		
		≥ SQ1	Residential	Generic Value	0.00078	59	61	10	[8.8]	100	0.75	0.1	0.19	1.6	2.3	0.076	7	1.8	0.11	[0.13] 0.12	5.3	[0.059] 0.052	0.13	[0.13]	0.11	[NA]
			Res	100 X GW MSC	0.0012	09	90	7.5	[0.16] 0.14	100	3.1	0.5	0.7	7	10	0.5	2	7	0.5	[0.73] 0.65	20	[0.25] 0.22	0.063	[0.004	6] 0.0041	[NA]
			CASRN		110-57-6	95-50-1	541-73-1	106-46-7	91-94-1	75-71-8	75-34-3	107-06-2	75-35-4	156-59-2	156-60-5	75-09-2	120-83-2	94-75-7	78-87-5	542-75-6	75-99-0	62-73-7	77-73-6	1-75-09		[111-42-2]
			REGULATED	SUBSTANCE	DICHLORO-2-BUTENE, TRANS-1,4-	DICHLOROBENZENE, 1,2-	DICHLOROBENZENE, 1,3-	DICHLOROBENZENE, P-	DICHLOROBENZIDINE, 3,3'-	DICHLORODIFLUORO- METHANE (FREON 12)	DICHLOROETHANE, 1,1-	DICHLOROETHANE, 1,2-	DICHLOROETHYLENE, 1,1-	DICHLOROETHYLENE, CIS- 1,2-	DICHLOROETHYLENE, TRANS-1,2-	DICHLOROMETHANE (METHYLENE CHLORIDE)	DICHLOROPHENOL, 2,4-	DICHLOROPHENOXY ACETIC ACID, 2,4- (2,4-D)	DICHLOROPROPANE, 1,2-	DICHLOROPROPENE, 1,3-	DICHLOROPROPIONIC ACID, 2,2- (DALAPON)	DICHLORVOS	DICYCLOPENTADIENE	DIELDRIN		[DIETHANOLAMINE]

¹ For other options see Section 250,308

All concentrations in mg/kg

E - Number calculated by the soil to groundwater equation is section 250.308

C - Cap

NA - The soil buffer distance option is not available for this substance

[THMs - The values listed for trihaiomethanes (THMs) are the total for all THMs combined.]

[HAAs - The values listed for trihaiometic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

_				1			T			- 1		ī						1	1	\neg
	Soil	Buffer	Distance (feet)		Y Y	20	₹	NA	20	10	50	NA	10	ΥN	₹ () Y	NA V	NA	Ψ.	¥
		П		7	ပ	Ш	ш	E	ш	ш	ш	ш	ш	ш	ပ	ш	ш	ш	ш	шΪ
		Nonresidential	Generic	, l	$\overline{}$	52	8.2	[890] 8,100	[710] 570	240	[190] 150	[1,300] 560	[1,700] 1,400	$\overline{}$	10,000	49	[2,600] <u>2,100</u>	[260] 210	$\overline{}$	290
Aguifore	Nomes Adminst	Nonre	- 160 × ×	MSC	10,000	20	8	[2,300] 21,000	[210] 170	3.6	[74] <u>59</u>	[2,300] 1,000	[31] <u>25</u>	10	10,000	100	[23,000] 19,000	[1,100] 880	[230] 180	200
9	2				Ö	Ш	ш	ш٠	Ш	Ш	ш	ш	ш	ш	ပ	Ш	ш	Ш	ш	쁴
MOM	NOID	Residential	Generic		10,000	52	8.2	[320]	[150] 140	240	[42] 37	[470] 130	330	1.2	10,000	49	[940] 780	[57] <u>50</u>	[15] 13	290
		Resi	18 × ×	MSC	10,000	20	09	[830] 7,600	[46] <u>41</u>	3.6	[16] 14	[830] 240	[7]	10	10,000	100	006'9 [006'9	[240] 210	[49] 43	700
П				1	ပ	Ш	ш_	Ш	ш	ш	ш	ш	ш	ш	∪ ш	Ш	ш	ш	ш	ш
		Nonresidential	Generic	Anida	10,000	55	820	[89] 810	[71] <u>57</u>	240	[19] 15	[1,300] 560	[170] 140	120	[10,000] <u>8,300</u>	4.9	[260] 210	[26] 21	[7] 5.3	- 29
	2500 mg/L	Nonre	100 X GW	MSC	10,000	20	000'9	[230] 2,100	[21] 17	3.6	[7.4] 5.9	[2,300] 1,000	[3.1]	1,000	10,000	10	[2,300] 1,900	[110] 88	[23] 18	20
П	25			1	ပ	Ш	E	E	ш	Э	ш.	ш	ш	w	ш	Ш	ш	ш	ш	ш
	TDS >	Residential	Generic	Anna	10,000	52	820	[32] 290	[15] 14	240	[4.2] <u>3.7</u>	[470] 130	<u> </u>	120	3,000 3,000	4.9	[94] 78	[6]	[2] 1.3	29
Used Aquifers		Resi	100 X GW	MSC	10,000	20	9,000	[83] 760	[5] 4.1	3.6	11.6]	[830] 240	[0.7] 0.59	1,000	[8,300] 6,900	2	[830] 690	[24] 21	[5] 4.3	70
[≾			ی ا	-	ш	ш	ш	ш	ш	Ш	ш	Ш	Ш	ш	ш	Ш	ш	ш	ш	ш
Use		sidential	Generic	уаппе	[2,900] <u>2,400</u>	52	8.2	[0.89] 8.1	[0.74]	240	[0.19] 0.15	[13]	1.7]	1.2	[100] 83	0.049	[2.6]	[0.26] 0.21	[0.068] 0.053	0.29
	TDS ≤ 2500 mg/L	Nonresi	100 X GW	MSC	[9,300] 7,800	┞-	9	[2.3]	<u>e</u> °	L	[0.074] 0.059		[0.031] 0.025	├—	[230] 190	0.1		[1.1]	[0.23] 0.18	0.7
ŀ	 		۱		ш	Ш	ш	ш	ш	Ш	ш	ш	ш	ш	Ш	Ш		Ш	Ш	Ш
	TDS <	Residential	Generic	value	[1,000] [880]	52	8.2	[0.32]	[0.15] 0.14	240	[0.042] 0.037	[4.7] 1.3	[0.36] 0.33	1.2	[36] 30	0.049	[0.94] 0.78	[0.057] 0.05	[0.015] 0.013	0.29
L		Res	160 X SW	MSC	[3,300] 2,800	2	9	[0.83]	[0.046]	3.6	0.016)	[8.3] 2.4	[0.006 6] 0.0059	우	[83] 69	0	[8.3] 6.9	[0.24]	[0.049] 0.043	0.7
		MOOV	Nega		84-66-2	35367-38-5	1445-75-6	60-51-5	119-90-4	70-38-2	60-11-7	121-69-7	119-93-7	756-79-6	105-67-9	99-62-0	51-28-5	121-14-2	606-20-2	88-85-7
		REGULATED	SUBSTANCE		DIETHYL PHTHALATE	DIFLUBENZURON	DIISOPROPYL METHYL PHOSPHONATE	DIMETHOATE	DIMETHOXYBENZIDINE, 3,3-	DIMETHRIN	DIMETHYLAMINOAZO BENZENE, P-	DIMETHYLANILINE, N,N-	DIMETHYLBENZIDINE, 3,3-	DIMETHYL METHYLPHOSPHONATE	DIMETHYLPHENOL, 2,4-	DINITROBENZENE, 1.3-	DINITROPHENOL, 2,4-	DINITROTOLUENE, 2,4-	DINITROTOLUENE, 2,6- (2,6- DNT)	DINOSEB

¹ For other options see Section 250.308

All concentrations in mg/kg $\rm E-Number$ calculated by the soil to groundwater equation is section 250.308 $\rm C-Cap$

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values ¹

		_																	F	2000					
		Soll	Buffer	Distance (feet)	A V	ΑN	NA () (%	ΑN	20	ĄZ	A A	15	15	15	15	NA	15	NA	NAN	15	ΑN	Ϋ́	ΑĀ	NA
Г		П			Ш	ш	w	ш	ш	Ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	Ш	ш	ш	ш	ш -	ш
			Nonresidential	Generic Value	3.5	-	18,000	[44] 19	0.24	180	1.3	[20] 16	250	260	260	70	4.1	5.5	17	[6.7] 5.7	[130] 110	2,500	1,600	[270] 220	4,600
	Used Aquifers TDS ≤ 2500 mg/L TDS > 2500 mg/L Soil	Siellahu	Nonre	100 X GW MSC	[32] <u>27</u>	20	30,000	[25] <u>11</u>	2	70	æ	[23] <u>19</u>	48	20	45	12	10	0.2	88	[58] <u>49</u>	[5.8]	10,000	6,200	[700] 570	7,000
	q			O	Ш	ш	ш	ш	Ш	Ш	ш	ш	Ш	Ш	ш	Ш	Ш	ш	Ш	Ш	ш	Ш	ш	Ш	ш
	Used Aquifers TDS > 2500 mm/l		Residential	Generic Value	[0.84] 0.85	12	18,000	[44] 3.9	0.24	180	1.3	[7:1] 5:9	250 250	[130] 110	[150] 120	20	4.1	5.5	4.2	[2.4] 2	[46] 37	290	390	[58] <u>54</u>	4,600
			Resi	100 X GW MSC	[6.4] 6.5	20	30,000	[25] 2.2	2	70	80	[8.3] 6.9	48	[25] <u>21</u>	[25] <u>21</u>	12	10	0.2	21	[21] 17	[2.1] 1.7	4,200	1,500	[150] 140	7,000
Γ	Т		,		ш	Ш	ш	ш	ш	ш	ш	ш	LLJ:	ш	ш	Ш	ш	Ш	ш	ш	Ш	Ш	Ш	Ш	Ш
			Nonresidential	Generic Value	[42] 35	1,200	[17,000] 18,000	[44] 19	24	18	130	[2,000] 1,600	250	260	260	70	410	550	17	[670] 570	1,900	2,500	1,600	[270] 220	
		00 mg/L	Nonre	100 X GW MSC	[320] 270	2,000	[29,00 0] 30,000	[25] 11	200	7	800	[2,300] 1,900	48	20	45	12	1,000	20	88	[5,800] 4,900	85	10,000	6,200	[700] 570	7,000
ı	ı				Щ	Ш	ш	ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Е	ш	ш	ш	ш	ш	ш	ш	ш	Ш
	,	TDS >	Residential	Generic Value	[8.4] 8.5	1,200	[5,900] 18,000	[16] 3.9	24	18	130	[710] 590	250	260	260	70	410	550	4.2	[240] 200	1,900	590	330	[58] <u>54</u>	4,600
- diliforn	duitals		Resi	100 X GW MSC	[64] <u>65</u>	2,000	[10,000] 30,000	[9.1] 2.2	200	7	800	[830]	48	20	45	12	1,000	. 20	21	[2,100] 1,700	85	4,200	1,500	[150]	7,000
{	9			o _	Ш	Ш	ш	ш	Ш	ш	Ш	ш	ш	ш	ш	Ш	Ш	ш	Ш	ш	Ш	Ш	Ш	ш	Ш
	Per		sidential	Generic Value	[0.42] 0.35	12	[170] <u>570</u>	[0.76] 0.19	0.24	0.18	1.3	[20] 16	250	260	260	70	4.1	5.5	0.17	[6.7] 5.7	[130]	25	16	[2.7]	46
		0 mg/L	Nonresi	100 X GW MSC	[3.2]	20	[290] <u>970</u>	[0.43] 0.11	2	0.07	8	[23] 19	48	20	45	12	10	0.2	0.88	[58] 49	[5.8]	180	62	[7.0]	70
	ı	250			ш	Ш	Ш	Ш	Ш	ш	Ш	ш	ш,	ш	ш	Ш	Ш	ш	Ш	ш	ш	ш	ш	ш	Ш
		TDS <	Residentiai	Generic Value	[0.084] 0.085	12	[59] <u>210</u>	[0.16] 0.039	0.24	0.18	1.3	[7.1] <u>5.9</u>	[130] 110	[130] 110	[150]	. 70	4.1	5.5	0.042	[2.4] 2	[46] <u>37</u>	5.9	3.9	[0.58] 0.54	46
			Res	100 X GW MSC	[0.64] 0.65	20	[100] 350	[0.091] 0.022	2	0.07	8	[8.3]	[25] 21	[25] 21	[25] 21	12	10	0.2	0.21	[21] 17	[2.1]	42	15	[1.5]	70
			CASRN		123-91-1	957-51-7	122-39-4	122-66-7	85-00-7	298-04-4	505-29-3	330-54-1	115-29-7	959-98-8	33213-65-9	1031-07-8	145-73-3	72-20-8	106-89-8	16672-87-0	563-12-2	110-80-5	141-78-6	140-88-5	100-41-4
		,		<u> </u>				ZINE, 1,2-				,,,		(РНА)	ETA)	FATE			Z			, 2- (EGEE)			
			REGULATED	SUBSTANCE	DIOXANE, 1,4-	DIPHENAMID	DIPHENYLAMINE	DIPHENYLHYDRAZINE, 1,2-	DIQUAT	DISULFOTON	DITHIANE, 1,4-	DIURON	ENDOSULFAN	ENDOSULFAN I (ALPHA)	ENDOSULFAN II (BETA)	ENDOSULFAN SULFATE	ENDOTHALL	ENDRIN	EPICHLOROHYDRIN	ETHEPHON	ETHION	ETHOXYETHANOL, 2- (EGEE)	ETHYL ACETATE	ETHYL ACRYLATE	ETHYL BENZENE

¹ For other options see Section 250.308
All concentrations in mg/kg
E - Number calculated by the soil to groundwater equation is section 250.308
C - Cap
NA - The soil buffer distance option is not available for this substance
ITHMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs - The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soll
B. Soil to Groundwater Numeric Values¹

					Used	Used Aguiters				-	Nonuse	Nonuse Aguifers			
			TDS ≤ 2500 mg/L	10 mg/L			TDS > 2	TDS > 2500 mg/L						Soil	
REGULATED	CACON	Res	Residential	Nonres	sidential	Res	Residential	Nonre	Nonresidential	Resi	Residential	Nonre	Nonresidential	Buffer	
SUBSTANCE		100 X GW	Generic Value	100 X GW MSC	Generic Value	100 X MSC	Generic Value	100 X GW MSC	Generic	GW MSC	Generic Value	100 X GW MSC	Generic Value	(feet)	_
ETHYL DIPROPYL THIOCARBAMATE, S- (EPTC)	759-94-4	[100]	[71] 120 E		[210] 350	E 10,000	[7,100] 10,000	10,000	10,000 C	[100] 170	[71] E	[290] 490	[210] E 350	¥X	
ETHYL ETHER	60-29-7	[830]	[230] E	1 906	[650] 530	E 10,000	10,000	10,000	10,000	[830]	[230] E 190	[2,300] 1,900	[650] E	A A	
ETHYI METHACRYI ATE	97-63-2	63	10 E	╄	43	E 6.300	1,000	10,000	4,300 E	63	10 E	260	43 E	ΝA	
ETHYLENE CHLORHYDRIN	1	[83] 69			1	=	[950]	E 10,000	2	[83] 69	[10] 7.9	[230]	[26] <u>22</u> [E	NA	
ETHYLENE GLYCOL	107-21-1	1.400	170 E	F	170	E 10,000	10,000	C 10,000	10,000 IC	10,000	10,000 C	10,000	10,000 C		
ETHYLENE THIOUREA (ETU)	96-45-7	[0.33]		[0.93] 0.78	[0.1]	E [33] 28	3.1	E [93] 78	[10] <u>8.7</u> E	[330]	[37] <u>31</u> E	[930] 780	[100] 87	_	
ETHYLP-NITROPHENYL PHENYLPHOSPHORO	2104-64-5	[0.042] 0.035	[0.13] 0.11	[0.12] 0.097	[0.37] E	E [4.2]	[13] 11	E [12]	[37] <u>30</u> [E	[0.042] 0.035	[0.13] E	[0.12] 0.097	[0.37] 0.3 0.3	50	
FENAMIPHOS	22224-92-6	0.07	0.06 E	0.07	0.06	E 7	9	E 7	9 9	0.07	0.06 E	0.07	0.06 E		П
FENVALERATE (PYDRIN)	51630-58-1	8.5	94 E	8.5	94	E 8.5	94	E 8.5	94 E	8.5	94 E	8.5	-	_	
1	2164-17-2	6	2.5 E		2.5	E 900	250	E 900	250		_	Б			П
FLUORANTHENE	206-44-0	26	4	56	_	E 26	3,200	E 26	3,200		\neg			_	T
FLUORENE	86-73-7	[170] 140	[3,400] E 2,800	190	3,800	E 190	3,800	E 190	3,800 E	190	3,800 E	190	$\overline{}$		
FLUOROTRICHLORO METHANE (FREON 11)	75-69-4	200	87 E	200	87	E 10,000	8,700	E 10,000		10,000		10,000	_		
FONOFOS	944-22-9	-	2.9 E	1	2.9	100	290	E 100	-	-	\neg		_7		\neg
FORMALDEHYDE	20-00-0	100	12 E	100	12	E 10,000	1,200	10,0	1,200	읙	_	흰	-		T
FORMIC ACID	64-18-6	0.063	0.0071 E	0.26	0.029	E 6.3	0.71	E 26	2.9 E	-1	_	-	-	4	Т
FOSETYL-AL	39148-24-8	[13,00	[12,000] E	[35,00	[31,00 [E 190,00	190,00	C 190,00	190,00 0	18,700	[12,00 E 0]	[35,000]	[31,00 [3]	₹ Z	
		8.700		24.00	21,000	·	ı	+		Ш	2.700	24,000	21,000		
FURAN	110-00-9	[4.2]	[1.8] 1.5 E	三。	[5.2]	E [420]	[180]	E [1,200] 970	[520] E	[420] 350	[180] E	[1,200]	[520] E	NA.	
		27,		<u>;</u>											

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308 C – Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A. Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soll B. Soll to Groundwater Numeric Values¹

					Positi	Head Aguillare				L					
	339		TDS ≤ 2500 mg/L	30 mg/L			TDS > 2	TDS > 2500 mail		_	Nonuse	Nonuse Aquifers		Ú	1100
REGULATED	CASEN	Resi	Residential	Nonres	esidential	Re	Residential	Nonre	Nonresidential	Re	Residential	Nonre	Nonresidential	` <u></u>	Buffer
SUBSTANCE		100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	100 X GW MSC	Generic Value	TOO X GW MSC	Generic Value	Dist (fa	Distance (feet)
FURFURAL	98-01-1	[11]	[1.4] E 0.24	[35]	[4.4]	E [1,100] 190	[140]	E [3,500]	[440] 99	E [11]	1.4] E	[35]	[4.4]	Ш	¥.
GLYPHOSATE	1071-83-6	70	620 E	70	620	E 7,000	62,000	E 7,000	62,000 E	70	L	L	-	П	15
HEPTACHLOR	76-44-8	0.04	0.68 E	0.04	0.68	E 4	68	E 4	68 E	П 18	310	18	1	L	15
HEPTACHLOR EPOXIDE	1024-57-3	0.02	1.1 E	0.05	1.1	E 2	110	E 2	110 E	20	1,100	20	1,100	ш	10)
HEXACHLOROBENZENE	118-74-1	0.1	0.96 E		96'0	E 0.6	5.8	9.0	5.8	9.0	Н	9.0	5.8 E		15
HEXACHLOROBUTADIENE	87-68-3	[0.94] 0.84	[11] 10 E	[4.4]	[52] 42	E [94] <u>84</u>	[1,100]	E [290]	[3,400] [E	E 290	0 3,400 E	290	3,400 E		15
HEXACHLOROCYCLO PENTADIENE	77-47-4	വ	91 E	5	91	E 180	3,300	E 180	3,300	E 180	3,300 E	180	3,300 €		15
HEXACHLOROETHANE	67-72-1	0.1	0.56 E	0.1	0.56	E 10	99	E 10	99	E 10	3 99 C	19	3 92 E		15
	110-54-3	150	1,400 E	[620] 580	[5,600]	E 950	8,700	E 950	8,700 E	E 150	0 1,400 E	[9]	[5,600] E 5,300		15
	51235-04-2	40	8.5 E	40	8.5	E 4,000	850	E 4,000	850 E	40	0 8.5 E	. 40	B.5 E		NA
THIAZOX (SAVEY)	78587-05-0	20	820 E	20	820	E 50	820	E 50	820	E 50	0 820 E		820 E		15
	2691-41-0	40	4.8 E	40	4.8	E 500	回 09 旧	= 200	= 09 E		0 4:8 E	40	4.8 E		NA
HYDRAZINE/HYDRAZINE SULFATE	302-01-2	0.001	0.00011 E	0.005	0.0005	E 0.1	0.011	0.51	0.057 E	0.01	1 0.00d1 E	0.051	0.0057 E		¥
HYDROQUINONE	123-31-9	[1.2]	[0.16] E	[5.7]	0.77]	E [120]	[16] 15	E [570]	[77] 61	E [1,200] 1,100	1 [160] E	[5,700] 4,500	(770) E 610		¥.
INDENO[1,2,3-CD]PYRENE	193-39-5	[0.019] 0.018	[1,500] E	[0.28] 0.23	[22,00 18,000	E [1.9]	[150,00 0] 140,00 0	E 6.2	190,00	6.2	2 190,00 C	6.2	190,00 0		2
IPRODIONE 3	36734-19-7	[170] 1.5	[490] <u>4.3</u> E		[1,300] 18	E [1,300]	[3,700] 430	E [1,300] <u>620</u>	[3,700] E	[170] 1.5] [490] E	[470] 6.2	[1,300] E		20.
ISOBUTYL ALCOHOL	78-83-1	[1,300] 1,000	[340] E	[3,500] 2,900	[910] <u>760</u>	E 10,000	10,000	C 10,000	10,000	C 10,000	0 10,000 C	10,000	10,000 C		¥ V
ISOPHORONE	78-59-1	10	1.9 E	10	1.9	E 1,000	190	1,000	190 E	10,000	0 1,900 E	10,000	1,900 E		NA
ISOPROPYL METHYLPHOSPHONATE	1832-54-8	20	8.1 臣	70	8.1	E 7,000	810	E 7,000	810 E	02	8.1 E	20	8.1 E		¥ N

All concentrations in mg/kg E - Number calculated by the soil to groundwater equation is section 250.308

C - Cap
NA - The soil buffer distance option is not available for this substance
[THMs - The values listed for trihalomethanes (THMs) are the total for all THMs combined.]
[HAAs - The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soll	Buffer	(feet)	10	2		50	¥ Ž	2	10		NA	NA	NA		NA	10	¥	A C) W	AA	¥	¥	₹	¥	₹ Z	
H				<u> </u>	u	-	<u>၂</u>	ш	ш	ш		ш	Ш	ပ		Ш	ш	ш	ш	ш	ш	Ш	ш	ပ	ш	ш	
	10	Nonresidential	Generic Value	14 7001	-	\neg	\dashv	47	0.51	[46] 1,300	,	[0.2] 0.16	0.072]	10,000		3.2	710	20	[2,200] 1,800	450	38	7,600	0.02	10,000	0.12	6.4	
,	Nonuse Aquiters	Nonres	100 X GW SC SC	+-			10,000	400	[58]	[0.35] <u>9.7</u>		[1.2] 0.97	[0.58] 0.49	10,000	đ	20	4.5	180	10,000 1 <u>9,700</u>	1,800	300	10,000	0.18	10,000	0.88	56	
ľ	Se A	Н			Ц	- 1	디	Ш	ш	w		ш	ш	<u>-</u> г	u — О	Ш	Ш	-	ш	Ш	Е	Ш	Ш	ш	ш	ш	
:	Non	Residential	Generic Value	14 0001	7000 1-1		10,00	44	[2] 0.12	[17] 460		[0.069] 0.057	[0.026] 0.021	[9,900]	10,000	3.2	710	4.8	[780] 650	100	38	2,600	0.0048	[5,100] 4,300	0.029	1.6	
		Resid	100 X GW	7 21	6.5		000	400	13	[0.13] 3.5		[0.42]	[0.21] 0.17	10,000		20	4.5	42	[4,200] 3,500	420	300	10,000	0.042	10,000	0.21	6.3	
Г	П		0	יַּי	Ц		ပ	ш	ш	-ш	<u> — ს</u>	ш	ш	ပ		Щ	Щ	Ш	ပ	Ш	Ε	Ш	旦	၁	Ш	Е	
		Nonresidential	Generic Value	19747	370		10,000	4,700	[260]	[4,600] 10,000		[20] 16	[7.2] 6.1	10,000		320	710	200	10,000	450	38	7,600	0.2	10,000	12	640	
	2500 mg/L	Nonre	100 X GW	25	2.7		5,000	40,000	[2,300] 450	[35]		[120] 97	[58] 49	10,000		2,000	4.5	1,800	10,000	1,800	300	10,000	1.8	10,000	88	2,600	
١			9	<u> </u>	П		ပ	Ш	ш	wш	<u> </u>	Щ	ш	1	<u>п</u> — О	1	1	Щ	ပ	Ш	Ш	Ш	Е	ш	Ш	ш	
	TDS >	Residential	Generic Value	14003	<u> </u>		10,000	4,700	[240] 12	[1,700] 10,000		[6.9]	[2.6] 2.1	[006'6]	10.000	320	710	48	10,000	100	38	7,600	0.048	[5,100] 4,300	2.9	160	
Used Aguifers		Resi	100 X GW	200	[0.73] 0.65		5,000	40,000	[2,100] 110	[13] 230		[42] 35	[21] 17	10,000		2,000	4.5	420	10,000	420	300	10,000	0.42	10,000	21	630	
ĮŠ	Γ	_	٥_	Ļ	Ц	\neg	Ш	Е	ш	ш	13%	ш	ш	ш		Ш	т	Ш	ш	Ш	┼	Щ	ш	w	Ш		
Lise		sidential	Generic Value	3	3.7		170	47	[6.6] 0.51	[46] 1,300		[0.2]	[0.072]	[410]	2,100	3.2	630	2	[2,200] 1.800	[5] 4.5	0.38	76	0.002	[140] 120	0.12	6.4	
	≤ 2500 mg/L	Nonres	26 8 × × × × × × × × × × × × × × × × × ×	_	[0.034	0.027	20	400	[58] 4.5	흐		[1.2] 0.97	[0.58]	드	10,00	2		8	[10,00 0] 9.700	₩	L	400	0.018	[930] 780		\square	
ı	250	l	ا ا		ш_	_	Ш		Ш	ш		ш	Ш	Ш		Ш	1	_	ш .	Ш	+	╅═	Ш	Ш	Ш	 	
	Z SQT	Residential	Generic Value		[1] 0.89		170	47	[2] 0.12	[17] 460		[0.069]	[0.026]	[99] 500		3.2	630	0.48	[780]		0.38	76	0.00048	[51] 43	0.029	1.6	
		Res	100 X 30 X	Mag	[0.007 3]	0.0065	20	400	[21]	[0.13] 3.5		[0.42]	[0.24]	[840]	4.200	20	4	4.2	[4,200] 3,500	[4] 4.2	3	400	0.0042	[330]	0.21	6.3	
		10040	CASKIN		143-50-0		121-75-5	123-33-1	12427-38-2	78-48-8		126-98-7	10265-92-6	67-56-1		16752-77-5	72-43-5	109-86-4	79-20-9	96-33-3	74-87-3	78-93-3	60-34-4	108-10-1	624-83-9	591-78-6	
		REGULATED	SUBSTANCE		KEPONE		MALATHION	MALEIC HYDRAZIDE	MANEB	MERPHOS OXIDE		METHACRYLONITRILE	METHAMIDOPHOS	METHANOL		METHOMYL	METHOXYCHLOR	METHOXYETHANOL. 2-	METHYL ACETATE	METHYL ACRYLATE	METHYL CHLORIDE	METHYL ETHYL KETONE	METHYL HYDRAZINE	METHYL ISOBUTYL KETONE	METHYL ISOCYANATE	METHYL N-BUTYL KETONE (2-HEXANONE)	

¹ For other options see Section 250.308

All concentrations in mg/kg $\rm E-Number$ calculated by the soil to groundwater equation is section 250.308 $\rm C-Cap$

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A

Table 3 - Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soll

B, Soll to Groundwater Numeric Values¹

	Soll	Buffer	Distance (feet)	Ą	NA	30	15) VA	NA	15	15	30	ΑN	ΨX	NA	ΑN	30	15	NA	30	δ.	AN A
t		Г	4.	Ш	ш	Ш	ш	Ш.	ш	ш	ш	ш	Ш	ш	ш	ш	Ш	ш	Ш	Ш	ш	Ш
		Nonresidential	Generic Value	8,400	[0.42]	210	200	2.8	1,200	[26] 21	[1,900] 100	[1,400]	40	2.4	0.053	0.67	[7,500] 2,500	[1,500] 120	[62] <u>49</u>	2,800	[21] 0.0079	[2.5] 2.1
	Nonuse Aquifers	Nonre	100 X GW MSC	10,000	[3.4]	100	35	20	3,000	[3.4]	[47]	[820] 680	20	7	0.24	φ	[3,000]	[190] 15	[190] 150	1,200	[120] 0.044	[17] 14
ı	86 /		o	Ш	ш	Ш	ш	ш	ш	ш	ш	ш	Ш	Ш	Ш	Ш	Ш	ш	ш	ш	ш	ш
	Nonc	Residential	Generic Value	2,000	[0.092] 0.082	210	47	2.8 8	1,200	[4:8]	[680] 25	[510] 420	40	2.4	0.019	0.67	[7,500] 2,500	[330] 29	[13] <u>12</u>	970	[8] 0.002	[0.55] 0.49
		Resi	100 X GW MSC	10,000	[0.74]	100	8.4	20	3,000	[0.23] 0.21	[17] 0.63	[290] 240	70	7	0.087	9	[3,000] 1,000	[41] 3.6	[41] <u>36</u>	420	[42] 0.011	[3.7]
Г	Т		0	Ш	Щ	Ш	ပ	Ш	Ш	ш	ш	ပ	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш
		Nonresidential	Generic Value	8,400	[42] 34	21	10,000	28	120	[2,600] 2,100	[100,00 0] 10,000	10,000	4,000	240	5.3	67	2,500	[150] 120	[6.2] 4.9	16,000	[2,100] 0.79	[250] 210
	TDS > 2500 mg/L	Nonre	100 X GW MSC	10,000	[340]	10	3,500	200	300	[340] 270	[2,500] 260	10,000	7,000	700	24	009	1,000	[19] 15	[19] <u>15</u>	2,000	[12,00 0] 4,4	[1,700] 1,400
	25(Ш	ш	ш	ш	ш	ш	ш	ш	ပ	щ	ш	Ш	ш	ш	ш	Ш	Ш	Ш	ш
	TDS >	Residential	Generic Value	2,000	[9.2] 8.2	21	4,700	28	120	[180] 160	[68,000] <u>2,500</u>	10,000	4,000	240	1.9	29	2,500	[33] 29	[1.3] 1.2	16,000	[750] 0.2	[55] 49
Used Aquifers		Resi	100 X GW MSC	10,000	[74] 66	10	840	200	300	[23] <u>21</u>	[1,700] <u>63</u>	10,000	7,000	700	8.7	900	1,000	[4.1] 3.6	[4.1] 3.6	2,000	[4,200] 1.1	[370] 330
\ <u>\</u>		_	<u></u>	Е	Ш	Э	ш	Ш	Ш	Ш	ш	Ш	Ш	ш	Ш	Ш	Ш	Е	Е	Ш	Е	ш
Use		sidential	Generic Value	84	[0.42] 0.34	0.21	200	0.28	1.2	[26] 21	[1,900] 100	[1,400] 1,200	40	2.4	0.053	0.67	25	[1.5] 1.2	[0.062] 0.049	2,800	[21] 0.0079	[2.5]
	TDS ≤ 2500 mg/L	Nonres	100 X GW MSC	620	[3.4]	0.1	35	2	ဗ	[3.4]	[47] <u>2.6</u>	[820] 680	20	7	0.24	9	10	[0.19] 0.15	[0.19] 0.15	1,200	[120] 0.044	[17] 14
ı	250	Ш	ນ	Ш	ш	Э	ш	ш.	Ш	Ш	Ш	Ш	Ш	Ш		ш	ш	ш	Ш	Ш	Ш	Ш
	Z SQT	Residential	Generic Value	20	[0.092] 0.082	0.21	47	0.28	1.2	[1.8] <u>1.6</u>	[680] <u>25</u>	[510] 420	40	2.4	0.019	0.67	25	[0.33] 0.29	[0.013] 0.012	970	[8] <u>0.002</u>	[0.55] 0.49
		Res	100 X GW MSC	150	[0.74] 0.66	0.1	8.4	2	3	[0.23] 0.21	[17] 0.63	[290] 240	20	7	0.087	တ	10	[0.041] 0.036	[0.041] 0.036	420	[42] 0.011	3.3
		CASRN		80-62-6	66-27-3	298-00-0	25013-15-4	1634-04-4	94-74-6	101-14-4	91-57-6	98-83-9	51218-45-2	21087-64-9	7786-34-7	79-11-8	91-20-3	134-32-7	91-59-8	15299-99-7	88-74-4	100-01-6
		REGULATED	SUBSTANCE	METHYL METHACRYLATE	METHYL METHANESULFONATE	METHYL PARATHION	METHYL STYRENE (MIXED ISOMERS)	METHYL TERT-BUTYL ETHER (MTBE)	METHYLCHLOROPHENOXYA CETIC ACID (MCPA)	METHYLENE BIS(2- CHLOROANILINE), 4,4*-	METHYLNAPHTHALENE, 2-	METHYLSTYRENE, ALPHA	METOLACHLOR	METRIBUZIN	MEVINPHOS	MONOCHLOROACETIC ACID (HAA)	NAPHTHALENE	NAPHTHYLAMINE, 1-	NAPHTHYLAMINE, 2-	NAPROPAMIDE	NITROANILINE, O-	NITROANILINE, P.

All concentrations in mg/kg

E – Number calculated by the soil to groundwater equation is section 250.308

C – Cap

NA – The soil buffer distance option is not available for this substance

[THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.]

[HAAs – The values listed for trihalometic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

Ì	=	fer	ince st)	4		(4	<	ď	A	A .	<u> </u>			Ą	5
	Soil	Buffer	Distance (feet)	Ν	Ϋ́	¥ Z	NA	NA	N N	NA	V V	NA	ල	Ž		ΑN	15
Γ			o	ပ	ш	ш	ш	Е	ш	ш	ш	Ш	ш	ш	ပ	ш	Ш
		Nonresidential	Generic Value	[10,00 0] 27	7.8	[19,00 0] 1,600	[4,100] 410	0.015	0.001	0.0024	[78] 2	[6.8] 0.018	[5,500]	[1.5]	10,000	2.6	120
	Nonuse Aquifers	Nonres	100 X GW MSC	[10,000 1 63	70	[93,000] <u>7,800</u>	[6,000] 600	0.093	0.0058	0.018	[63]	[49] 0.13	[3,500] 960	[13] 10	300	20	6
	e A	Н			Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	ပ	ш	ш
	Nonus	Residential	Generic Value	[3,600] 5.2	7.8	[6,700] <u>570</u>	[4,100] 410	0.0029	00.0] [80 0000.0	0.0001	[17] 0.38	[1.4] 0.0035	[5,500] 300	0.097]	10,000	2.6	120
		Resid	100 X GW MSC	[8,300] 12	70	[33,000] <u>2,800</u>	[6,000]	<u> </u>	0.0004	0.0014	0.31	[10] 0.025	[3,500]	[0.8] 0.79	300	20	က
┢	Т	┢		Ш	Ш	Ш	Ш	ш	ш	Ш	ш	Ш	ш	ш	ပ	ш	Ш
		Nonresidential	Generic Value	[1,000] 27	\vdash	[1,900] 1,600	410	0.15	0.01	0.024	[7.8] 2	0.68]	[5,500]	0.15	10,000	260	12,000
	> 2500 ma/L	Nonres	100 X GW MSC	[2,300] 63	7,000	[9,300] 7,800	900	0.93	0.058	0.18	[6.3] 1.6	[4.9]	[3,500] 960	[1.3] 1	300	2,000	300
	250			ш	Ш	ш	ш	ш	ш	ш	ш	ш	ш	ш ,	U	ш	ш
	1 Aquifers TDS Residential	. 1	Generic Value	[360]	780	[670] 570	410	0.029	0.0008	0.0019	0.38	[0.14] 0.035	[2,300]	[0.0097] 0.0091	10,000	260	12.000
Tilfore		Resi	100 X GW MSC	[830]	7,000	[3,300] 2,800	009	0.18	0.0045	0.014	[1.4]	[1] 0.25	[1,500]	[0.08] 0.079	300	2,000	300
}		U .	ш	Ш	ш	ш	ш	ш	ш	Ш	Ш	ш	ш	Ö	Ш	ш	
1	200	Nonresidential	Generic Value	[10] 0.27	7.8	[19] 16	4.1	0.0015	0.0001	0.0002	[0.078] 0.02	[0.006 8] 0.0018	[110] 15	[0.001 5] 0,0012	10,000	2.6	120
	TDS < 2500 mg/l	Nonre	100 X GW MSC	[23]	2	[93] <u>78</u>	9	0.009	0.000	0.001	0.06	1	[69]	10.013	[120]	8	6
ı	250		۱ ,	Ш	<u> ш</u>	ш	ш	ш	ш	ш	ш	ш,	ш.	ш	ပ	Ш	1
	YDS <	Residential	Generic Value	[3.6]	7.8	[6.7] 5.7	4.1	0.00029	0.000007	0.000019	0.0038	[0.0014] 0.00035	[23] 3	[0.00009 7] 0.000091	10,000	2.6	120
		Res	100 X GW MSC	[8.3]	2	[33] 28	9	0.0018	0.0000	0.0001	[0.014] 0.0031	[0.01] 0.0025	[15]	[0.000 84] 0.0007	[42] 35	20	2
			CASKN	98-95-3	556-88-7	88-75-5	100-02-7	79-46-9	55-18-5	62-75-9	924-16-3	621-64-7	86-30-6	759-73-9	117-84-0	23135-22-0	1010 42 6
		REGULATED	SUBSTANCE	NITROBENZENE	NITROGUANIDINE	NITROPHENOL, 2-	NITROPHENOL, 4-	NITROPROPANE, 2-	NITROSODIETHYLAMINE, N-	NITROSODIMETHYLAMINE, N-	NITROSO-DI-N-BUTYLAMINE, N-	NITROSODI-N- PROPYLAMINE, N-	NITROSODIPHENYLAMINE,	NITROSO-N-ETHYLUREA, N-	OCTYL PHTHALATE, DI-N-	OXAMYL (VYDATE)	DAPAOLIAT

All concentrations in mg/kg
E - Number calculated by the soil to groundwater equation is section 250.308
C - Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihatomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soli
B. Soli to Groundwater Numeric Values¹

	Soil	Buffer	Distance (feet)	15	A	40	20	20	10	10	5	ر ا	3€	10	20	15	10
r	-			ш	ш	ш	Ш	ш	Ш	ш -	Ш	ш	ш	Ш	ш	Ш	ш
		Nonresidential	Generic Value	[410] 1.7	8.6	[47] 190	[0.83] 0.68	[0.7] 0.54	[20] 17	[81] 67	[340] 380	[770] 630	[980] 830	5,900	[19] <u>15</u>	870	5,000
	Nonuse Aquifers	Nonre	100 X GW MSC	[70] 0.29	0.05	[0.17]	[0.17] 0.14	[0.17] 0.14	[0.17] 0.14	[0.17] 0.14	0.17]	0.14	[580] 490	74	[3.8] 3	44	100
ı	Se /	П	υ	ш	Ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	ш	Ш	ш	Ш
	Nonc	Residential	Generic Value	[150] 0.59	6) 	[10]	[0.18] 0.16	[0.14] 0.13	4	[18] 16	[75] 140	[170] <u>150</u>	[350] 290	2,900	[3.9]	870	5,000 E
		Resi	100 X GW MSC	[25] 0.1	0.05	[0.04]	[0.037] 0.033	[0.037] 0.033	[0.037] 0.033	[0.037] 0.033	[0.037] <u>0,069</u>	[0.037] 0.033	[210] 170	74	[0.81] 0.72	44	100
Γ	Γ		В	— С — Ш	삐	ш	Ш	ш	ш	ш	ပ	ш	Ç	ш	ш	ш	Ш
		Nonresidential	Generic Value	[10,000] <u>170</u>	086	[4,700] 6,900	[83] <u>68</u>	[66] <u>54</u>	1,200	2,600	10,000	36,000	10,000	5,900	[1,900] 1,500	870	200
	TDS > 2500 mg/L	Nonre	100 X GW MSC	[2,000] 29	ฑ	[17] <u>25</u>	[17] 14	[17] 14	10	5.4	5.7	8	9,200	74	[380] 300	44	10
	25	П	u	— О — ш	шј	ш	ш	ш	ш	ш	—ш—О	ш	ပ	Ш	ш	ш	Ш
	TDS	Residential	Generic Value	[10,000]	86	[1,000] 6,600	[18] <u>16</u>	[14] 13	[440] 400	[1,800] 1,600	[7,500] 10,000	[17,000] 15,000	10,000	5,900	[390] 350	[560] 500	200
Used Aguifers		Resi	100 X GW MSC	[2,000] 10	rol	[4] <u>24</u>	[3.7] 3.3	[3.7] [3.3	[3.7] 3.3	[3.7] 3.3	[3.7] 5.7	[3.7] 3.3	9,200	74	[81] <u>72</u>	[28] <u>25</u>	10
V			C	ш	Ш	Ш	E	Ш	Е	ш	ш	Ш	ш	Ш	ш	ш	Ш
Use		sidential	Generic Value	[410] 1.7	8	[47]	[0.83] 0.68	[0.7] 0.54	[20] 17	[81] 67	[340] <u>380</u>	[770] 630	[980]	[750] 620	[19] 15	[26] <u>20</u>	5
	TDS ≤ 2500 mg/L	Nonres	100 X GW MSC	[70] 0.29	0.05	[0.17] 0.68	[0.17] 0.14	[0.17] 0.14	[0.17] 0.14	[0.17] 0.14	[0.17] 0.19	[0.17] 0.14	[580] 490	[9.3] 7.8	[3.8] 3	V	0.1
	250		. מ	Ш	Ш	ш	ш	Щ	Щ	ш	ш	Ш	Ш	ш_	Ш	W	Ш
	TDS	Residential	Generic Value	[150] <u>0.59</u>	8.6	[10] 66	[0.18] 0.16	[0.14] 0.13	4.	[18] <u>16</u>	[75] 140	[170] <u>150</u>	[350] 290	[260] 220	[3.9] <u>3.5</u>	<u>s</u> [9]	သ
		Res	100 X GW MSC	[25] <u>0.1</u>	0.05	[0.037] 0.24	[0.037] 0.033	[0.037] 0.033	[0.037] 0.033	[0.037] 0.033	[0.037] 0.069	[0.037] <u>0.033</u>	[210] 170	[3.3]	[0.81] 0.72	[0.28] 0.25	0.1
		CASEN		56-38-2	1336-36-3	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	1114-71-2	9-26-809	7-10-92	82-68-8	87-86-5
		REGULATED	SUBSTANCE	PARATHION	PCBS, TOTAL (POLYCHLORINATED BIPHENLYS) (AROCLORS)	PCB-1016 (AROCLOR)	PCB-1221 (AROCLOR)	PCB-1232 (AROCLOR)	PCB-1242 (AROCLOR)	PCB-1248 (AROCLOR)	PCB-1254 (AROCLOR)	PCB-1260 (AROCLOR)	PEBULATE	PENTACHLOROBENZENE	PENTACHLOROETHANE	PENTACHLORO NITROBENZENE	PENTACHLOROPHENOL

All concentrations in mg/kg E - Number calculated by the soil to groundwater equation is section 250.308

C-Cap

NA — The soil buffer distance option is not available for this substance [THMs — The values listed for trihatomethanes (THMs) are the total for all THMs combined.] [HAAs — The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	177			9	Used	Used Aquifers	fers				_					L	,
V.	ŧ		TDS ≤ 25	≤ 2500 mg/L		\vdash	,	TDS > 2	2500 mg/L			2	onuse	Nonuse Aquirers		_	Soil
REGULATED		Res	Residential	Nonres	esidential	\vdash	Residential	ential	Nonr	Nonresidential		Residential	lal	Nonre	Nonresidential	;	Buffer
SUBSTANCE	CASKN	100 X GW	Generic Value	100 X	Generic Value	 	700 X GW SW	Generic Value	100 X GW	Generic Value	100 X GW		Generic Value	100 X GW MSC	Generic Value	<u> </u>	Distance (feet)
PERFLUOROBUTANE	375-73-5	09 ₩	NA	190	¥	UI	0.900	NA	1	AN N	OI	69	NA	190	¥N N	OI	NAN NA
PERFLUOROOCTANE	1763-23-1	0.007	NA	0.007	¥	mi	2.0	AN EN	7.0	¥N	E 0.0	0.007	NA	0.007	V	ш	NA
PERFLUOROOCTANOIC	335-67-1	0.007	NA	0.007	₽	ш	2.0	AN E	7.0	₩);() =	0.007	NA E	0.007	ĕ	ш	¥
PHENACETIN	62-44-2	[33] 30	[13] <u>12</u> E	[150]	[58] 46	ញ ស ស	3,000	[1,300] E	[15,00 0]	[5,800] 4,600	E [33,000]] 30,000		[13,00 E 0]	000'92	29,000	ш	NA
PUDNANTHDENE	85.01-8	110	10 000 IE	110	10.000	ш	110	10,000 E	1	10,000	<u>,</u>	┢	10,000 E	110	10,000	Ш	10
DHENOI	108-95-2	200		Ļ	┿	 -	20,000	+-	20,	3,300	E 20,000	H	3,300 E	20,000	3,300	ш	ΑN
PHENYL MERCAPTAN	108-98-5	[4,200]	-		[18]		[420] 350	 	E [1,200] 970	[1,800]	7)	[4.2] [0	[6.4] E	[12] 9.7	[18] 15	ш	30
PHENYLENEDIAMINE, M-	108-45-2	[25] 21	[3.5] <u>3</u> E		[9.9]	<u>г</u>	[2,500] 2,100	300	E [7,000]	[990] <u>820</u>	E [25,000] 21,000	<u>:</u>	3,500] E	[70,000] 58,000	[9,900] 8,200	ш	&
PHENYLPHENOL, 2-	90-43-7	[38] <u>34</u>	[550] E	[180]	[2,600]	<u>п</u>	[3,800] 3,400	[55,000 E	E [18,00	190,00	C [38,000]	-	190,00 0	20,000	190,00		గ ు
PHORATE	298-02-2	[0.83]	[1.8] <u>1.5</u> E	[2] 1.9	[4.9]	<u>в</u>	[83] 69		[230]	[490]	i i		[1.8] 1.5	[2] 1.9	[4.9]	ш	30
PHTHALIC ANHYDRIDE	85-44-9	[8,300]	[2,600] E	[23,00	7,7	17.	190,00	+-	1190,0	[190,00	[[190,00	├	[190,0	[190,00	[190,0	ပ	ΑN
		4.2	[]	= 	2 2 2	-	0) 420 (0		귀		-	3		1,8	260		(
PICI ORAM	1918-02-1	50	7.4 E	20	7.4	E 5	5,000	740	E 5,000	740	<u> </u>	50 7.	.4 E	20	7.4	Ш	NA
PROMETON	1610-18-0	40	1	$\overline{}$	39	E '	4,000	3,900	E 4,000	3,900	Ш	40	\exists		39	ш	AA
PRONAMIDE	23950-58-5	[310]	[190] E	[880] 730	[540]	ш	1,500	920	E 1,500	920	П Б	[310] [1 260	[190] 160	[880]	[540] 450	ш	∀
PROPACHLOR	1918-16-7	0.0	0.0046 E	Ļ	0.0	ш	-	0.46	П	0.46	Ш	7	0.46 E		0.46	Ш	≨
PROPANIL	709-98-8	[21] 17	[11] <u>8.7</u> E		[30] 25	E	[2,100] 1,700	[1,100] [1,870]	E [5,800] 4,900	[3,000]	E [21]	17	[11] 8.7	<u>85</u>	[30] 25	ш	NA NA
PROPANOL, 2- (ISOPROPYL ALCOHOL)	0-69-29	42	7.3 E	180	31	, E	4,200	730	E 10,000	3,100	ш	42 [7]	7.3 E	180	<u>ج</u>	<u></u>	₹
	0 0					ē											

¹ For other options see Section 250.308

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

		<u> </u>	e .													1000				1	_						
	Soil	Buffer	Distance (feet)		Ϋ́	Ϋ́	30	¥.	ئے۔	AN	¥ Z	20	30	¥	Š		30	¥	¥ Z	30	3(NA	30	20	ιΩ	30	AN V
Γ					ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш		ш	ш	ш	ш	ш	Ш	ш	ш	ш	ш	ш
		Nonresidential	Generic	Value	0.5	2.4	1,700	[0.24] 0.19	2,200	4.4	[13] 11	[370] 310	47	0.057	[2,700]		[910] 760	0.15	[2,800]	2,400	83	2.2	0.055	270	20	1,800	13
	Nonuse Aquifers	Nonre	100 X	MSC	1	10	880	1.4	13	35	[120] 97	[110] 91	30	0.2	[23,000 1	19,000	[580]	0.4	[3,500] 2,900	1,000	20	6	0.04	58	0.0019	700	43
1	Se /	Г	- 7		Ш	Ш	ш	ш	ш	Ш	ш	Ш	ш	ш	Ш		ш	ш	ш	ш	ш	Ш	ш	ш	ш	ш	ш
ŀ	Nonu	Residential	Generic	Value	0.5	2.4	400	[0.052] 0.047	2,200	4.4	[4;7] 3.9	[81] <u>74</u>	47	0.057	[970] 800	del el	[330] 270	0,115	[1,100] 810	2,400	83	2.2	0.055	270	20	1,800	2.6
		Resid	100 X	MSC	1	10	210	[0.3] 0.27	13	35	[42] 35	[24] <u>22</u>	30	0.2	[8,300] 6.900		[210] 170	0.4	[1,300] 1,000	1,000	50	6	0.04	28	0.0019	700	[8] 8.4
T		Г	·		ш	Ш	Ш	ш	ш	ш	ш	ш	ш	ш	ပ	_	ш	Щ	ш.	ш	Ш	Ш	Ш	ш	ш	ш	ш
		Nonresidential	Generic	Value	20	240	9,900	[24] 19	2,200	4.4	[130] 110	[37] 31	47	5.7	190,00 0		6,200	15	[280] 240	2,400	8,300	220	5.5	270	3.2	1,800	13
	> 2500 mg/L	Nonre	100 X	MSC	100	1,000	5,200	[140] 110	13	35	[1,200] <u>970</u>	[11] 9.1	30	20	190,00 0		4,000	-04	[350] 290	1,000	5,000	900	4	58	0.0003	700	43
L	52		В		Ξ	ш	ш	ш	Ш	ш	ш	Ш	Ш	Е	Ш		ш	ш	ш	ш	Ш	Ш	Ш	ш	ш	Ш	ш
	TDS >	Residential	Generic	Value	50	240	006'6	[5.2]	2,200	4.4	[47] 39	[8.1] 7.4	47	5.7	000,79] I	80,000	6,200	15	[110] 81	2,400	8,300	220	5.5	270	3.2	1,800	2.6
liend Amilfore		Resi	100 X	MSC	100	1,000	5,200	[30] 27	13	35	[420] 350	[2.4]	30	20	190,00 0		4,000	40	[130] 100	1,000	5,000	006	4	. 28	0.0003	700	[8] 8.4
			v		Ш	Ш	Ш	ш	Ш	Ш	Ш	Щ	Ш	ш	ш		ш	Ш	ш	Ш	ш	ш	ш	Ш	ш	ш	Ш
lisa		sidential	Generic	Value	0.5	2.4	1,700	[0.24] 0.19	2,200	4.4	[1.3] 1.1	[0.37] 0.31	47	0.057	[2,700] 2,200		[910] 760	0.15	[2.8] 2.4	24	83	2.2	0.055	[16] 13	0.032	18	0.13
l	TDS ≤ 2500 mg/L	Nonres	100 X	MSC	1	10	. 880	[1.4] 1.1	13	35	[12] 9.7	0.091	30	0.2	[23,00 0]	19.00	[580] 490	0.4	[3.5] 2.9	10	50	6	0.04	[3.5]	0.000	7	0.43
L	22				Ш	ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш		ш	ш	ш	E	ш	Ш	Ш	ш	ш	Ш	ш
	ZDS ≤	Residential	Generic	Value	0.5	2.4	400	[0.052] 0.047	2,200	4.4	[0.47] 0.39	[0.081] 0.074	47	0.057	008 [026]		[330] 270	0.15	[1.1] 0.81	24	83	2.2	0.055	[6] 4.6	0.032	18	0.026
		Res	100 X	MSC	-	10	210	[0.3]	13	35	[4.2] 3.4	[0.024] 0.022	30	0.5	[8,300] 6,900		[210] 170	0.4	[1.3] 1	10	20	ග	0.04	[1.3] 1	0.0000	2	[0.08]
	70	CASRN			139-40-2	122-42-9	103-65-1	75-56-9	129-00-0	8003-34-7	110-86-1	91-22-5	76578-14-8	121-82-4	108-46-3		299-84-3	122-34-9	57-24-9	100-42-5	34014-18-1	5902-51-2	13071-79-9	95-94-3	1746-01-6	630-20-6	79-34-5
		REGULATED	SUBSTANCE		PROPAZINE	PROPHAM	PROPYLBENZENE, N-	PROPYLENE OXIDE	PYRENE	<u>PYRETHRUM</u>	PYRIDINE	QUINOLINE	QUIZALOFOP (ASSURE)	RDX	RESORCINOL	•	RONNEL	SIMAZINE	STRYCHNINE	STYRENE	TEBUTHIURON	TERBACIL	TERBUFOS	TETRACHLOROBENZENE, 1,2,4,5-	TETRACHLORODIBENZO-P- DIOXIN, 2,3,7,8- (TCDD)	TETRACHLOROETHANE, 1,1,1,2-	TETRACHLOROETHANE, 1,1,2,2-

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308

C – Cap NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 – Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

_							_										_			
	Soil	Buffer	Distance (feet)		NA NA	ह ि (15	30	¥ Z	AN.	20	AN	¥ N	Y Z	¥.	20	15	A N	20
Γ		П		\Box	ш	ပ	٦	Ш	ш	ш	Е	ш	ш	ш	ပ	ш	Ш	ш	ш	ပ
		Nonresidential	Generic	a t		190,00		[15] 12	[8.6]	2.8	0.39	390	4,400	[9.7]	10,000	[10] 8.3	1.2	1.9	320	10,000
	Nonuse Aquifers	Nonre	100 X	MSC	ភ	18,000		[1] 0.97	[5.8] 4.9	13	[3.5]	[58] 150	10,000	[21] 17	10,000	[11] 9.1	0.3	[150] 0.38	800	10,000
l	9.6	Г	<i>-</i> :		ш	ပ		ш	ш.	E	E	Ε	Ш	E	Ш	E	Ш	ш	Ш	Ö
	Nong	Residential	Generic	Value	4.3	190,00 0		[0.52] 4.3	[3.1]	[0.57] 0.55	[0.14] 0.11	[55] 140	4,400	[2.1]	[5,200] 4,700	[2.2] 2	1.2	[280] 0.47	350	10,000
	à	Resi	100 X	MSC	ស	18,000		[0.42] 0.35	[2.1]	[2.6]	[1.3] 1	[21] <u>52</u>	10,000	[4.6]	[4,600] 4,100	[2.4]	0.3	[54] 0.091	800	10,000
Ţ	ı	1	۱,		ш	<u>ပ</u>		Ш	Ш	ш	ш	ш	Ш	ш	ш	ш	Ш	Ш	<u> Ц</u>	ပ
		Nonresidential	Generic	Value	43	190,00 0		[1.5] 1.2	[860] 730	280	[39] 32	7,800	4,400	[970] 780	[2,400] 1,900	[1,000] 830	120	[2,000] 190	350	10,000
	TDS > 2500 mg/L	Nonre	100 X	MSC	50	18,000		[0.1] 0.097	[580] 490	1,300	[350] 290	3,000	10,000	[2,100] 1,700	[2,100] 1,700	[1,100] 910	30	[400] 38	800	10,000
ľ	150				ш	၂ ၂	Ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	ш	U
	TDS >	Residential	Generic	Value	43	[190,00 0] 160,00	0	[0.52] 0.43	[310] 250	[57] 55	[14] 11	[5,500] 7,80 <u>0</u>	4,400	[210] 190	[520] 470	[220]	120	[2,000] 47	350	10,000
1	Usen Adniers	Resid	100 X	MSC	20	[13,000] 10,000		[0.042] 0.035	[210] 170	[260]	[130] 100	[2,100] 3,000	10,000	[460] 410	[460] 410	[240]	90	[400] 9.1	900	10,000
[5		ه ا		ш	ш'		ш	ш	ш.	ш	ш	凹	ш	ш	ш	Ш	ш	ш	ပ
	850	sidential		Value	0.43	[5,500] <u>4,500</u>		[0.015] 0.012	[8.6]	2.8	[0.39]	[150] 390	44	[9.7] 7.8	[24] 19	[10] 8.3	1.2	[770] 1.9	3.5	10,000
	TDS < 2500 mg/l	Nonresi	20 ×	MSC GW	0.5	[350] 290		[0.001 2] 0.000 97	[5.8] 4.9	13	[3.5]		L		[21]	<u>E</u> ?	L	Ε,	80	[10,00 0] 4,400
ı	15	31	١		ш	ш	_	ш - 👘	ш	ш	ш	ш	삗		ш	ш	Ш	ш	Ш	<u> — О — Ш</u>
	The	Residential	Generic	Value	0.43	[2,000] 1,600		[0.0052] 0.0043	[3.1] 2.5	[0.57]	[0.14]	[55] 140	44	[2.1] 1.9	[5.2] <u>4.7</u>	[2.2] 2	1.2	[280]	3.5	[10,000] 3,400
		Ros	100 X	MSC	0.5	133 163		[0.000 42] 0.0003	[2.1]	[2.6]	[1.3] 1	[21] 52	9	[4.6]	[4.6]	[2.4]	0.3	[54]	8	[6,300] 1,100
			CASKN	in the	127-18-4	58-90-2		78-00-2	3689-24-5	109-99-9	39196-18-4	137-26-8	108-88-3	108-44-1	95-53-4	106-49-0	8001-35-2	2303-17-5	75-25-2	76-13-1
	225	REGIII ATED	SUBSTANCE		TETRACHLOROETHYLENE (PCF)	TETRACHLOROPHENOL, 2,3,4,6-		TETRAETHYL LEAD	TETRAETHYLDITHIO PYROPHOSPHATE	TETRAHYDROFURAN	THIOFANOX	THIRAM	TOLUENE	TOLUIDINE, M-	TOLUIDINE, O-	TOLUIDINE, P.	TOXAPHENE	TRIALLATE	TRIBROMOMETHANE (BROMOFORM) (THM)	TRICHLORO-1,2,2- TRIFLUOROETHANE, 1,1,2-

¹ For other options see Section 250.308

All concentrations in mg/kg
E - Number calculated by the soil to groundwater equation is section 250.308
C - Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A
Table 3 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

			0			_	Ĺ										-	\					
18000	ijos:	Buffer	Distance (feet)	¥.	50		15	Š	¥	ΑN	15		20	A A	20	Ą	ž	NA	Š	Υ Υ	30		
Г		F		ш	⊸ი	~ш	ш	ш	Ш	ш	ပ		ш	ш	ш	ш	ш	ш	ш	ш	ш	-ш-	Ö
		Nonresidential	Generic Value	[0.32] 0.97	[10,00	2,700	34	72	1.5	1.7	190,00		[34,00 0] 28,000	1,500	22	[9.9] 8.4	320	0.15	1.5	[2,900] 2,400	1.9	[3,500] 10,000	
	Nonuse Aquifers	Nonre	100 X GW MSC	[2]	[4,400] 700		4	200	5	က	100,00 0	•	[12,000] <u>9,700</u>	7,000	ហ	[58] <u>49</u>	400	0.26	6.2	10,000	*	[620] 5,300	
ı	Se		O	ш	_0	⊸ш	Ш	Ш	Е	Е	ပ	- 5	ш	Ш	ш,	ш	Ш	Ш	E	ш	旦	ш	
	Nonc	Residential	Generic Value	[0.32] 0.97	[10,00 0]	2,700	31	72	1.5	7.1	190,00		[12,00 0] 10,000	1,500	55	[3.6]	320	0.037	0.36	[1,000] [870	1.9	[840] 7,300	0.7.200
		Resi	100 X GW MSC	[2]	[4,400] 700	٠,	4	200	5	5	100,001		[4,200] <u>3,500</u>	2,000	ស	[21] 17	400	0.063	1.5	[8,300] 6,900	1	[150] 1,300	
Γ	Т		0	ш	ш		ш	ш	Ш	ш	ပ		ш	ш	Ш	ш	ш	Ш	ш	ပ	Ш	<u>—</u> ш —	ပ
		Nonresidential	Generic Value	[32] 97	2,700		3,100	720	15	17	190,00 0		[3,400] <u>2,800</u>	150	2,200	[990] 840	320	15	150	10,000	190	[3,500] 10,000	
	TDS > 2500 mg/L	Nonre	100 X GW MSC	[200] 600	200		400	2,000	50	09	[100,0 00]	97,000	[1,200] <u>970</u>	200	009	[5,800] 4,900	400	26	620	10,000	100	[620] 5,300	
ı	25		_D	ш	ш		ш	Ш	Ш	ш	ပ		Ш	Ш	ш	ш	ш	ш	Ш	ပ	Ш	ш	
	TDS >	Residential	Generic Value	[32] <u>97</u>	2,700		3,100	720	15	17	190,00 0		[1,200] <u>1,000</u>	150	2,200	[360]	320	3.7	36	10,000	190	[840] 7,300	
Used Anuifers		Resi	100 X GW MSC	[200] 600	700		400	2,000	50	.50	[42,000]	35,000	[420] <u>350</u>	. 700	500	[2,100] 1,700	400	6.3	150	10,000	100	[150] 1,300	
 ₹			<u>.</u>	ш	ш		Ш	Ш	ш	ш	ш		ш	Е	Е	Ш	Ш	ш	ш	Ш	Ш	ш	
Use		sidential	Generic Value	[0.32] 0.97	27		31	7.2	0.15	0.17	[7,300] 5,900		[34] 28	1.5	22	[9.9] 8.4	3.2	0.15	1.5	[2,900] 2,400	1.9	[35] 300	
	TDS ≤ 2500 mg/L	Nonres	100 X GW MSC	[2] 6	2		4	20	0.5	0.5	[1,200 1 970		[12] 9.7	2	ហ	[58] 49	4	0.26	6.2	10,00 0	1	[6.2]	
П	250	П	6	Ш	ш		Ш	ш	-	Ш	Ш	_	ш	Ш	ш	Ш	ш		_	ш	Ш	ш	_
	Z SQT	Residential	Generic Value	[0.32]	27		31	7.2	0.15	0.17	[2,600] 2,100		[12] 10	1.5	22	[3.6] <u>2.9</u>	3.2	0.037	0.36	[1,000] <u>870</u>	1.9	[8.4] 73	,
		Res	100 X GW MSC	[2] 6	2 ·		4	20	0.5	0.5	[420] 350		3.5	7	5	[21] 17	4	0.063	1.5	[8,300] 6,900	1	[1.5]	
		CASRN		76-03-9	120-82-1		108-70-3	71-55-6	79-00-5	79-01-6	95-95-4		88-06-2	93-76-5	93-72-1	598-77-6	96-18-4	96-19-5	121-44-8	112-27-6	1582-09-8	95-63-6	
		REGULATED	SUBSTANCE	TRICHLOROACETIC ACID (HAA)	TRICHLOROBENZENE, 1,2,4-		TRICHLOROBENZENE, 1,3,5-	TRICHLOROETHANE, 1,1,1-	TRICHLOROETHANE, 1,1,2-	TRICHLOROETHYLENE (TCE)	TRICHLOROPHENOL, 2,4,5-		TRICHLOROPHENOL, 2,4,6-	TRICHLOROPHENOXY ACETIC ACID, 2,4,5- (2,4,5-T)	TRICHLOROPHENOXY PROPIONIC ACID, 2,4,5- (2,4,5-TP)(SILVEX)	TRICHLOROPROPANE, 1,1,2-	TRICHLOROPROPANE, 1,2,3-	TRICHLOROPROPENE, 1,2,3-	TRIETHYLAMINE	TRIETHYLENE GLYCOL	TRIFLURALIN	TRIMETHYLBENZENE, 1,3,4- (TRIMETHYLBENZENE, 1,2,4-)	

¹ For other options see Section 250.308

C-Cap

All concentrations in mg/kg E – Number calculated by the soil to groundwater equation is section 250.308

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A Table 3 -- Medium-Specific Concentrations (MSCs) for Organic Regulated Substances in Soil B. Soil to Groundwater Numeric Values¹

	Soil	Buffer	(feet)	30	NA	NA	(V	NA	NA	30	NA	NA VA	
			- 10	ш	Щ	Ш	ш	ш_	Ш	ш	ပ	ш	\dashv
		Nonresidential	Generic Value	[210] 93	20	0.023		3.8	_	4,100	10,000	[92] <u>78</u>	
Americans	Nonuse Aquilers	Nonre	100 X GW MSC	[120] 53	20	0.2	180	7.8	2	1,700	10,000	[580] 490	
1	98		<u>.</u>	Ш	ш	Ш	ш	ш	Ш	Ш	ပ	Ш	
100	NON	Residential	Generic Value	[74] 23	20	0.023	ည	0.73	0.27	[3,100] 2,400	10,000 C	[33] 27	
	4	Resi	100 X GW MSC	[42] 13	90	0.5	42	1.5	2	[1,300] 1,000	10,000	[210] 170	
			ט	ш	ш	Е	ш	Ш	Е	ш	ပ	E	
		Nonresidential	Generic Value	8,600 匡	20	2.3	2,100	88	2.7	[840] 690	10,000	160	
	TDS > 2500 mg/L	Nonre	100 X GW MSC	4,900	20	20	10,000	82	20	[350] 290	10,000	1,000	
	25	1	S	Ш	Ш	ш	Ш	ш	Ш	ш	ပ	ш	-
	TDS	Residential	Generic Value	[7,400]	20	2.3	500 E	7.3	2.7	[310]	10,000 C	160	
Used Aguifers		Resi	100 X GW MSC	[4,200]	20	20	4,200	15	20	[130]	10,000	1,000	1
Š	Γ		٥	ш	ш	Ш	21 E	ш	Ш	Ш	Ш	ш	L
Use		sidential		[210] 93	0.2	0.023	21	0.38	0.027	[8.4]	066	[97	
	TDS ≤ 2500 mg/L	Nonres	100 X GW 78M		0.5	0.2	Ľ	0.78	0.2		-		
ı	22			ш	ш	Ш		ш	<u> Ш</u>	ш	990 E	Ш	┢
	TDS <	Residential	Generic Value	[74] <u>23</u> E	0.2	0.023	5	0.073	0.027 E	[3.1] 2.4	066	[33] <u>27</u> E	
		Res	100 X GW MSC	[42] <u>13</u>	0.5	0.2	42	0.15	0.2	드	1 000	[210]	
S			CASRN	108-67-8 [42] 13	55-63-0	118-96-7	108-05-4	593-60-2	75-01-4	81-81-2	1330-20-7	12122-67-7	
	70	REGIII ATED	SUBSTANCE	TRIMETHYLBENZENE, 1,3,5-	TRINITROGLYCEROL	(NITROGLYCERIN)	VINYI ACETATE	VINYL BROMIDE	(BROMOE HENE)	WARFARIN	XVI ENES (TOTAL)	ZINEB	

¹ For other options see Section 250.308 All concentrations in mg/kg E – Number calculated by the soll to groundwater equation is section 250.308 C-Cap

NA – The soil buffer distance option is not available for this substance [THMs – The values listed for trihalomethanes (THMs) are the total for all THMs combined.] [HAAs – The values listed for haloacetic acids (HAAs) are the total for all HAAs combined.]

Appendix A

Table 4 – Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil

A. Direct Contact Numeric Values

		Residentia	al	Nonresid	ent	ial MSCs	
REGULATED SUBSTANCE	CASRN	MSC 0-15 feet		Surface So 0-2 feet	oil	Subsurfac Soil 2-15 feet	
ALUMINUM	7429-90-5	190,000	С	190,000	С	190,000	С
ANTIMONY	7440-36-0	88	G	1,300	G	190,000	С
ARSENIC	7440-38-2	. 12	G	- 61	G	190,000	Ç
BARIUM AND COMPOUNDS	7440-39-3	44,000	G	190,000	С	190,000	Ç
BERYLLIUM	7440-41-7	440	G	6,400	G	190,000	C
BORON AND COMPOUNDS	7440-42-8	44,000	G	190,000	С	190,000	С
CADMIUM	7440-43-9	110	G	1,600	G	190,000	С
CHROMIUM III	16065-83-1	190,000	С	190,000	С	190,000	С
CHROMIUM VI	18540-29-9	[4] <u>37</u>	·G	[220] <u>180</u>	G	[20,000] 140,000	N
COBALT	7440-48-4	66	G	960	G	190,000	N
COPPER	7440-50-8	[8,100] 7,200	G	[120,000] 100,000	G	190,000	С
CYANIDE, FREE	57-12-5	130	G	1,900	G	190,000	С
FLUORIDE	16984-48-8	8,800	G	130,000	G	190,000	С
IRON	7439-89-6	150,000	G	190,000	С	190,000	С
LEAD	7439-92-1	[500] <u>420</u>	U	[1,000] <u>2,500</u>	S] A	190,000	С
LITHIUM	7439-93-2	440	G	6,400	G	190,000	С
MANGANESE	7439-96-5	[10,000] <u>31,000</u>	G	[150,000] 190,000	[G]C	190,000	С
MERCURY	7439-97-6	35	G	510	G	190,000	С
MOLYBDENUM	7439-98-7	1,100	G	16,000	G	190,000	С
NICKEL	7440-02-0	4,400	G	64,000	G	190,000	С
PERCHLORATE	7790-98-9	. 150	G	2,200	G	190,000	С
SELENIUM	7782-49-2	1,100	G	16,000	G	190,000	С
SILVER	7440-22-4	1,100	G	16,000	G	190,000	
STRONTIUM	7440-24-6	130,000	G	190,000	С	190,000	С
THALLIUM	7440-28-0	[2] <u>2.2</u>	G	32	G	190,000	С
TIN	7440-31-5	130,000	G	190,000	С	190,000	С
VANADIUM	7440-62-2	15	G	220	G	190,000	С
ZINC	7440-66-6	66,000	G	190,000	С	190,000	С

All concentrations in mg/kg

R - Residential

NR - Non-Residential

G - Ingestion

N - Inhalation

C- Cap

U – [ÜBK Model] <u>IEUBK Model</u>

[S - SEGH Model] A - Adult Lead Model

NA - Not Applicable

Appendix A
Table 4 – Medium-Specific Concentrations (MSCs) for inorganic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

					Ilsed Amilfors	milfore			13					
			TDS < = 2	2500 mg/L			TDS > 25	2500 mg/L			Nonuse Aquifers	Aquifers		Soil
REGULATED		8		R	_	٣		RN	g.	- A		NR	۳	Buffer
SUBSTANCE	N C SON	100 X GW	Generic Value	100 X GW	Generic Value	100 X GW MSC	Generic Value	Distance (feet)						
rat aminuma	[7429-90-5]	N N	IAN	NA.	[NA]	[NA]	[NA]	[NA]	[AN]	[NA]	[NA]	[NA]	[NA]	[NA]
ANTIMONY	7440-36-0	9.0	27	9.0	27	60	2,700	90	2,700	900	27,000	009	27,000	15
ARSENIC	7440-38-2	-	29	F	59	100	2,900	100	2,900	1,000	29,000	1,000	29,000	15
BARIUM AND COMPOUNDS	7440-39-3	200	8,200	200	8,200	20,000	190,000	20,000	190,000	190,000	190,000	190,000	190,000	15
BERYLLIUM	7440-41-7	0.4	320	0.4	320	40	32,000	40	32,000	400	190,000	400	190,000	10
BORON AND COMPOUNDS	7440-42-8	900	1,900	009	1,900	000'09	190,000	000'09	190,000	190,000	190,000	190,000	190,000	30
CADMIUM	7440-43-9	0.5	38	0.5	38	20	3,800	20	3,800	500	38,000	200	38,000	15
CHROMIUM (III)	16065-83-1	9	190,000	10	190,000	1,000	190,000	1,000	190,000	10,000	190,000	10,000	190,000	5
CHROMIUM (VI)	18540-29-9	9	190	10	190	1,000	19,000	1,000	19,000	10,000	190,000	10,000	190,000	15
COBALT	7440-48-4	-	[59] <u>45</u>	[4] 2.9	[160]	[130]	[5,900]	[350]	[16,000	[1,300]	[59,000	[3,500]	[160,00	. र
		£1)				3	4,300	7	13,000	1.000	45,000	41200	130,000	٠
COPPER	7440-50-8	[NA]	[NA]	[NA]	[NA] 43.000	[NA]	[NA] 190,000	[NA] 10,000	[NA] 190,000	[NA] 100,000	[NA] 190,000	[NA] 100,000	[NA] 190,000	[NA] <u>10</u>
CYANIDE. FREE	57-12-5	R	200	20	200	2,000	20,000	2,000	20,000	20,000	190,000	20,000	190,000	20
FLUORIDE	16984-48-8	400	44	400	44	40,000	4,400	40,000	4,400	190,000	44,000	190,000	44,000	NA NA
IRON	[7439-89-6]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]	[NA]
LEAD	7439-92-1	0.5	450	0.5	450	50	45,000	20	45,000	200	190,000	200	190,000	10
LITHIUM	7439-93-2	[8] 6.9	[2,500]	[23] 19	[6,900]	[830]	190,000	[2,300]	190,000	[8,300] 6.900	190,000	[23,000	190,000	9
,	F.1		2, 100			3	,			-		19,000		(
MANGANESE	7439-96-5	30	2,000	30	2,000	3,000	190,000	3,000	190,000	30,000	190,000	30,000	190,000	1.
MERCURY	7439-97-6	0.2	10	0.2	10	20	1,000	20	1,000	200	10,000	200	10,000	15
MOLYBDENUM	7439-98-7	4	650	4	650	400	65,000	400	65,000	4,000	190,000	4,000	190,000	15
NICKEL	7440-02-0	10	650	10	650	1,000	65,000	1,000	65,000	10,000	190,000	10,000	190,000	15
PERCHLORATE	7790-98-9	1.5	0.17	1.5	0.17	150	17	150	17	1,500	170	1,500	170	Y V
SELENIUM	7782-49-2	5	26	2	26	200	2,600	200	2,600	5,000	26,000	5,000	26,000	20
SILVER	7440-22-4	10	84	10	84	1,000	8,400	1,000	8,400	10,000	84,000	10,000	84,000	20

¹For other options see Section 250.308 All concentrations in mg/kg

R - Residential

NR – Non-Residential NA – Not Applicable

Appendix A
Table 4 -- Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil
B. Soil to Groundwater Numeric Values¹

	Soil	Buffer	Distance (feet)	¥	15	10	02	15
		~	Generic Value	44,000	14,000	190,000	190,000	190,000
American	Nonuse Aquilers	NR	100 X GW MSC	190,000	200	190,000	[820]	190,000
Manne	ROLLUSE	R	Generic Value	44,000	14,000	190,000	190,000	190,000
200			100 X GW MSC	190,000	200	190,000	[82,000][290] <u>240</u> 68,000	190,000 190,000
		NR	Generic Value	4,400	1,400	190,000	[82,000] 68,000	
	TDS > 2500 mg/L	Z	100 X GW MSC	40,000	20	190'000	[82] 68	20,000
	TDS > 2	R	Generic Value	4,400	1,400	190,000	[29,000] 24,000	190,000
Used Aquifers			MSC X	40,000	20	190,000	[29] 24	20,000
Used A		NR	Generic Value	44	14	190'000	[820] 680	12,000
5	2500 mg/L	Z	100 X GW MSC	400	0.5	[7,000] [5,800	[0.82] 0.68	200
	TDS < = 2500 mg	8	Generic Value	44	14	190,000	[290] 240	12,000
	52	111	100 X GW MSC	400	0.2	[2,500] 2,100	[0.29] 0.24	200
	ħ	CASRN	82	7440-24-6	7440-28-0	7440-31-5	7440-62-2	440-66-6
		REGULATED	SUBS ANCE	STRONTIUM	THALLIUM	TIN	VANADIUM	ZINC

 $^{1}\mathrm{For}$ other options see Section 250.308 All concentrations in $\mathrm{mg/kg}$

R - Residential

NR - Non-Residential

NA - Not Applicable

ATRAZINE	ANTHRACENE	ANILINE	AMMONIUM SULFAMATE	AMMONIA	AMITROLE	AMINOBIPHENYL, 4-	AMETRYN	ALLYL ALCOHOL	ALDRIN	ALDICARB SULFOXIDE	ALDICARB SULFONE	ALDICARB	ALACHLOR	ACRYLONITRILE	ACRYLIC ACID	ACRYLAMIDE	ACROLEIN	ACETYLAMINO-FLUORENE, 2- (2AAF)	ACETOPHENONE	ACETONITRILE	ACETONE	ACETALDEHYDE	ACEPHATE	ACENAPHTHYLENE	ACENAPHTHENE	Regulated Substance
1912-24-9	120-12-7	62-53-3	7773-06-0	7664-41-7	61-82-5	92-67-1	834-12-8	107-18-6	309-00-2	1646-87-3	1646-88-4	116-06-3	15972-60-8	107-13-1	79-10-7	79-06-1	107-02-8	53-96-3	98-86-2	75-05-8	67-64-1	75-07-0	30560-19-1	208-96-8	83-32-9	CAS
0.035	0.3	0 007 P	0.2 1	[0.97] <u>0.85</u> H			0.009	0.005	0.00003 1	0.001 M	0.001	1 100.0	0.01	0.04	0.5 1	0.002	1 5000.0		0.1		0.9		[0.004] [I] 0.0012 O	0.06 S	0.06	RfDo (mg/kg-d)
0.23 C	_	0.0057 1			0.94 C	21 C			17 1			_	0.056 C	0.54 1	_	0.5		3.8 C					[1] [7800.0]			CSFo (mg/kg-d)-1
		0.001	_	[0.1] <u>0.5</u> 1				0.0001 X		_				0.002	0.001 1	0.006	0.00002	_		0.06	31 D	0.009				RfCi (mg/m³)
-0%		0.0000016 C	1	androne and	0.00027 C	0.006 C	1	· Balaster - unad - u-	0.0049	wear	40-7	****	10.0	1 890000.0		0.0001	walnindered 48	0.0013 C	22		an and a second	0.0000022				IUR {µg/m³}·1
130	21000	190	3	ω	120	110	389	3.2	48000	0.22	10	22	110	11	29	25	0.56	1600	170	0.5	0.31	4.1	3	4500	4900	Koc
	×	×		×				×						×	×	×	×			×	×	×		×	×	V0C7
70	0.066	33800	2160000	310000	280000	1200	185	1000000	0.02	330000	8000	6000	140	73500	1000000	2151000	208000	10.13	5500	1000000	10000000	1000000	818000	16.1	3.8	Aqueous Sol (mg/L)
2,4,5	1,5,6,7,8,9	1	10	2,5,7	4	5	5	2	4,5,6	5	5	2	2		2	4	1,2,4	7	1	1	1	1	o	5,6,7	1,5,6	Aqueous Soi Reference ¹
	30838	[13000] 12959		[13100] 13098				[13100] 13003						[13100] 13004	[13000] 12978	[13000] 12981	[13100] 13012			[13100] 13020	[13100] 13007	[13100] 13010		16493	17220	TF Vol from Surface Soil
	44562	[14900] 14876		[15000] 15059			11	[15000] 14937	*					[15100] 14939	[14900] 14902	[15000] 14906	[15100] 14948			[15000] 14958	[15000] 14942	[15100] <u>14945</u>		19776	20833	TF Vol from SubSurface Soil
		×		×				×						×	×		×		×	×	×	×				Organic Liquid
313	340	184	603	- 43	258	302	345	97	330	307	317	287	378	77	141	193	S	303	203	82	56	20	340	280	279	Boiling Point (degrees C)
	0.28				0.69	18.07		18.07	0.22			0.40		5.50	1.39		4.50	0.69		4.50	18.07			2,11	1.24	Degradation Coefficient (K)(yr¹)

Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA (Cancer

Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate [T = TEF]

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

Appendix A

Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

0.69	220				4	120		1,500	_	_	_	_	0.05 1	80-05-7	BISPHENOL A
	384	×			4,5,6	0.285		87000	0.0000024 C	0		0.014	0.02	117-81-7	BIS[2-ETHYLHEXYL] PHTHALATE
57270.57	105	×	[15100] 1 4 922	[13100] 12992	6	22000	×	16	0.062			220 1		542-88-1	BIS(CHLOROMETHYL)ETHER
	189	×	[14900] 14856	[13000] 12947	5	1700	×	. 62	0.00001 H			0.07 H	0.04 1	108-60-1	BIS(2-CHLORO-ISOPROPYL)ETHER
	179	×	[14900] 14849	[13000] 12942	1,4,5	10200	×	76	0.00033			1:1		111-44-4	BIS(2-CHLOROETHYL)ETHER
	218	×			4,6,7,9,10,11	100500		61					0.003 P	111-91-1	BIS(2-CHLORO ETHOXY)METHANE
18.07	255		<u>16325</u>	14027	1	7.2	i×	1,700	- la de de Million de la constante de la const	0.0004 X		0.008 [X]	0.05	92-52-4	BIPHENYL, 1,1-
	323				4,5,6	7.3		1400	0.00031 C			1.1 C	0.0003	58-89-9	BHC, GAMMA (LINDANE)
	304				6	0.1		2300	0.00053			1.8		319-85-7	BHC, BETA-
	288				4,5,6,7	1.7		1800	0.0018 1			6.3	0.008 D	319-84-6	BHC, ALPHA
	162	×	[15000] 14937	[13100] 13008	2	370000	×	4	0.004 C			14 C		57-57-8	BETA PROPIOLACTONE
20.90	179	×	(15000) 14846	[13000] 12940		493	×	190	0.000049 C	0.001 P (0.	0.17	0.002 P	100-44-7	BENZYL CHLORIDE
	205	×			1,2,3	40000		100	Article		-		0.1 P	100-51-6	BENZYL ALCOHOL
121413.60	221	×	15606	13494	1,5,13	53	×	920				13		98-07-7	BENZOTRICHLORIDE
	249		14913	12985	2,3,4,5	2700	×	32					4 1	65-85-0	BENZOIC ACID
	480				5,6,7	0.00055		4400000	0.00011 C			1.2 C		207-08-9	BENZOKJFLUORANTHENE
	500				1,5,6	0.00026		2800000	_				0.06 S	191-24-2	BENZOIGHIJPERYLENE
	357				5,6,7	0.0012		550000	0.00011 C			1.2 C		205-99-2	BENZOIBIFLUORANTHENE
	495				1,5,6	0.0038		910000	[0.0011] [C]] 0.0006	<u>1</u>	0.000002	[7.3] 1 1	<u>0.0003</u> I	50-32-8	BENZO[A]PYRENE
	438				1,5,6	0.011		350000	0.00011 C			0.7 X		56-55-3	BENZOJAJANTHRACENE
	400				1.2.4	520		530,000	0.067			230 I	0.003	92-87-5	BENZIDINE
	81	×	15000	[13100] 13053	1,2,3,4	1780.5	×	58	0.0000078	0.03 1 0.		0.055	0.004	71-43-2	BENZENE
	415				2	500		13	- 170				0.03	25057-89-0	BENTAZON
	520				5	2		1.900				0.0024 O	0.05 1	17804-35-2	BENOMYL
	decomp.				2,4,5	2000		31					0.004	114-26-1	BAYGON (PROPOXUR)
	421				1, 2	31.5		407.4		0.01 D)		[0.003] [D] 0.0015 Q	86-50-0	AZINPHOS-METHYL (GUTHION)
Degradation Coefficient (K)(yr¹)	Boiling Point (degrees C)	Organic Liquid	TF Vol from SubSurface Soil	TF Vol from Surface Soil	Aqueous Sol Reference¹	Aqueous Sol (mg/L)	V0C7	Koc	IUR (µg/m³}*	RfCi (mg/m²)	(m	CSFo (mg/kg-d)·¹	RfDo (mg/kg-d)	CAS	Regulated Substance
	A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				OP STORY	A C									

'Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS) M = EPA Drinking Water

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

Regulations and Health Advisories

VI IT CI CI STOP IN	CHI ORAMBEN	CARBOXIN	CARBON TETRACHLORIDE	CARBON DISULFIDE	CARBOFURAN	CARBAZOLE	CARBARYL	CAPTAN	BUTYLBENZYL PHTHALATE	BUTYLBENZENE, TERT-	BUTYLBENZENE, SEC-	BUTYLBENZENE, N-	BUTYLATE	BUTYL ALCOHOL, N-	BUTADIÈNE, 1,3-	BROMOXYNIL OCTANOATE	BROMOXYNIL	BROMOMETHANE	BROMODICHLOROMETHANE	BROMOCHLOROMETHANE	BROMOBENZENE	BROMACIL	Regulated Substance
	133-90-4	5234-68-4	56-23-5	75-15-0	1563-66-2	86-74-8	63-25-2	133-06-2	85-68-7	98-06-6	135-98-8	104-51-8	2008-41-5	71-36-3	106-99-0	1689-99-2	1689-84-5	74-83-9	75-27-4	74-97-5	108-86-1	314-40-9	CAS
	0.015	0.1	0.004	0.1	0.005		0.1	0.13	0.2	0.1 X	0.1 ×	0.05 P	0.05	0.1		[] <u>0.015</u> []	[0.02] <u>0.015</u> [J] O	0.0014	0.02	0.01 M	0.008	0.1 M	RfDo (mg/kg-d)
200		_	0.07			0.02 H		0.0023 C	0.0019 P				·		[3.4] <u>0.6</u> C	0.103 0	0.103 0		0.062				CSFo (mg/kg-d)-1
0 0007	-		0.1	0.7											0.002 1			0.005		0.04 X	0.06		RfCi (mg/m³)
0.0001	_		0.000006			dute	Mirelilla	0.00000066 C		Balt & d-Salton	amal-dvar-al-ds	widoub drobath A	2-0489-040-0	A-1-186-1874-F4	0.0000.0	programme t	- Head-strand	Pro-Server 1	0.000037 C				រUR (µg/m³)-1
ganna Connae	20	260	160	300	43	2,500	190	200	34000	680	890	2,500	540	3.2	120	18,000	300	170	93	27	268	58	Koc
			×	×						×	×	×	×	×	×			×	×	×	×		VOC?
0.056	700	170	795	2100	700	1.2	120	0.5	2.69	30	17	15	45	74000	735	0.08	130	17500	4500	16700	445	815	Aqueous Sol (mg/L)
457	2	5,6,8	1,2,3	1,2,3	2	1,5,6	2,4,5	4	4,5,6	1,6,7	1,6,7	1,6,7	2	1		12	2	2	6	4	1,2	2	Aqueous Sol Reference¹
		İ	[13100] 13117	[13100] <u>13022</u>						[13100] <u>12979</u>	[13100] <u>12983</u>	[13100] 12943	[13200] 13430	[13000] 12998	[13200] 13115			[13100] 13039	[13100] 12984	[13100] 13007	12954		TF Vol from Surface Soil
			[15000] 15083	[15100] 14961						[15000] 14904	[15000] <u>14910</u>	[15100] <u>14851</u>	[15200] 15519	[14900] 14930	[15000] <u>15041</u>			[15000] 14981	[15000] 14910	[15000] 14942	14866		TF Vol from SubSurface Soil
			×	×					×	×	×	×	×	×	×			×	×	×	×		Organic Liquid
351	210	407	77	46	311	355	315	259	370	169	174	183	138	118	-4,5	414	329	4	87	68	156.1	421	Bolling Point (degrees C)
0.09			0.07				4.22	589.39	1.39					4.68	4.50	5.75		6.66					Degradation Coefficient (K)(yr¹)

'Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix [N = EPA NCEA Provisional Values] <u>O = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides</u>
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate [T = TEF]

			2,4,6,7	1.12		4600					0.001 D	2921-88-2	CHLORPYRIFOS
12 [13000] [14900] 12961 14877	-	12		106	×	375	Mahahhair ,			_	0.02 X	106-43-4	CHLOROTOLUENE, P-
1,4,5 [13100] [15000] 12941 14848	-	1,4,5		422	×	760					0.02	95-49-8	CHLOROTOLUENE, O-
2	2	2		0.6		980	[0.00000089] [C]		1] C	[0.0031] 0.017	0.015	1897-45-6	CHLOROTHALONIL
1,3,5 [13200] [15000] 13055 15002	_	1,3,5		3100	×	260	half-alternatively-skell	[0.1] H 0.1001				75-29-6	CHLOROPROPANE, 2-
9 [13100] 13116	-	9		1736	×	50	0.0003	0.02 1			0.02 H	126-99-8	CHLOROPRENE
1,3,4 [12900] [14900] [15009		1,3,4		24000	×	400	rumshishish				0.005	95-57-8	CHLOROPHENOL, 2-
1 13190			_	220	ı×	480	with include Associate	[0.0006] P 0.002	e S	[0.0063] 0.06	[0.001] P 0.0007	100-00-5	CHLORONITROBENZENE, P-
1 19021	1	7	7	11.7	×	8500					0.08	91-58-7	CHLORONAPHTHALENE, 2-
8000 1,2,3 [13100] [15000] 13044 14988	1,2,3		힁	80	×	56	0.000023	[0.098] [D] 0.3 C	C	[0.019] 0.031	0.01	67-66-3	CHLOROFORM
5700 1 [13100] 13101	1 [700	ch	×	42	di-bradish di di	10 1	[N]	[0.0029]	[0.4] [N]	75-00-3	CHLOROETHANE
2899 4 [1 3200]	4 [2899		×	59	n - en sés distribuis de de la constant de la const	50 1				75-45-6	CHLORODIFLUOROMETHANE
4200 4,6,7,9 [13100] 12973	4,6,7,9 [1		4200		×	83	[0.000027] [C]		4	0.084	0.02	124-48-1	CHLORODIBROMOMETHANE
680 1,2,3,4 [13200] [15000] 14942	1,2,3,4		680		×	580	Profit of State St				0.04 P	109-69-3	CHLOROBUTANE, 1-
13 4	4		13			2600	0.000031 EC		1 C	0.11	0.02	510-15-6	CHLOROBENZILATE
490 3 [13100] [15000] 12992 14922	3 [490		×	200	whelster street	0.05 P			0.02 1	108-90-7	CHLOROBENZENE
3900 1 1 13139	1		900	3	×	460	, usin		2 P	0.2	0.004	106-47-8	CHLOROANILINE, P.
1100 3 1	3		100			76		0.00003				532-27-4	CHLOROACETOPHENONE, 2-
.] 6	.] 6		8	1000000	×	3.2			3] ×	[0.3] <u>0.27</u>		107-20-0	CHLOROACETALDEHYDE
3300 1,3,5,7,10 13100 115000 15116	1,3,5,7,10		300	Ĺ	×	48	0.000006 C	0.001 1	1 C	0.021		107-05-1	CHLORO-1-PROPENE, 3- (ALLYL CHLORIDE)
1400 4 [13100] [15000] 13117 15041	4 [1		400		×	22	de envision de	50 1				75-68-3	CHLORO-1,1-DIFLUOROETHANE, 1-
Dus Aqueous Sol Vol Vol from SubSurface Soil	Aqueous Sol TF Vol Reference' Surface Soil		r) J	Aqueous Sol (mg/L)	VOC?	Koc	IUR (ម្វ/៣ ^រ)។	RfCi (mg/m³)	Fo g-d)-1	CSFo (mg/kg-d)-¹	RfDo (mg/kg-d)	CAS	Regulated Substance

1Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources:
C = California EPA [Cancer
Potency Factor]

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water

[T = TEF]

Regulations and Health Advisories TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

DIBENZO[A,H]ANTHRACENE	DIAZINON	DIAMINOTOLUENE, 2,4-	DIALLATE	DI(2-ETHYLHEXYL)ADIPATE	DDT, 4,4*-	DDE, 4,4'-	DDD, 4,4'-	CYROMAZINE	CYFLUTHRIN	CYCLOHEXANONE	CYCLOHEXANE	CYANAZINE	CUMENE (ISOPROPYL BENZENE)	CROTONALDEHYDE, TRANS-	CROTONALDEHYDE	CRESOL, P-CHLORO-M-	CRESOL, P (METHYLPHENOL, 4-)	CRESOL, M (METHYLPHENOL, 3-)	CRESOL, O- (METHYLPHENOL, 2-)	CRESOL, DINFTRO-O-, 4,6-	CRESOL(S)	CHRYSENE	CHLORTHAL-DIMETHYL (DACTHAL) [DCPA]	CHLORSULFURÖN	Regulated Substance
53-70-3	333-41-5	95-80-7	2303-16-4	103-23-1	50-29-3	72-55-9	72-54-8	66215-27-8	68359-37-5	108-94-1	110-82-7	21725-46-2	98-82-8	123-73-9	4170-30-3	59-50-7	106-44-5	108-39-4	95-48-7	534-52-1	1319-77-3	218-01-9	1861-32-1	64902-72-3	CAS
	0.0007 D			0.6	0.0005	0.0003 X	0.003 X	[0.0075] <u>0.5</u> [I] O	0.025	1 5		0.002 [M]	0,1	0,001 P	<u>0.001</u> <u>S</u>	0.1 ×	0.005 H	0.05	0.05	[0.0001] [P]	0.1 D		0.01	[0.05] <u>0.02</u> [1]	RfDo (mg/kg-d)
4.1 C		4 C	0.061 H	0.0012	0.34 1	0.34	0.24					0.84 H		1.9 н	1,9 S							0.12 C			CSFo (mg/kg-d) ⁻¹
										0.7 P	6		0.4								0.06 C				RfCI (mg/m³)
0.0012 C	*	0.0011 C			0.000097	0.000097 C	0.000069 C				pi Shada i i	vide valid distribut	laded distinative		1				h-friffi-skylpin-com			0.000011 C		dalad kirk dala	រUR (μg/m³) ¹
1800000	500	36	190	47,000,000	240000	87000	44000	1,200	130,000	66	479	199	2800	6.1	5.6	780	49	35	22	257	25	490000	6,500	11	Koc
										×	×		×	×	×				×	×	×				V0C?
0.0006	50	7470	40	200	0.0055	0.04	0.16	11000	0.001	36500	55	171	50	156000	180000	3846	22000	2500	2500	150	20000	0.0019	0.5	192	Aqueous Sol (mg/L)
1,5,6	2,4,6,8	4	2,4,6,8	5	5,6,7	5	5.6.7	12	2	1,2,4,5	1,2,4,5,6	2,5	1,5,6	_	သ	2	6	2	3,5,6	4	2		2,5,7	2,5,6,8,9	Aqueous Sol Reference ¹
										[13000] 12949	[13100] 13140		[13100] 12940	[13100] 13006	[13000] 12998				[13000] 12974	13025	[13000] 12976				TF Vol from Surface Soil
										[14900] 14858	[15100] 	1	[15100] 14846	[15100] 14940	[14900] 14931		_		[14900] 14896	14970	[14900] 14899		2.0		TF Vol from SubSurface Soil
	×		×	×						×	×		×	×	×			×			×				Organic Liquid
524	306	292	328	214	260	348	350	222	448	157	81	369	152	104	10.4	235	202	202	191	312	139	448	360	531	Bolling Point (degrees C)
0.13		0 69	1.39	4.50	0.02	0.02	0.02						15.81	18.07	18.07		9.03	5.16	18.07	6.02	5.16	0.13	1.37		Degradation Coefficient (K)(yr¹)

¹Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk Information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] O = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

Appendix A

Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

RIDo CSFo RICI LUR CSFo RICI LUR Completed Completed CSFo Completed 210	_			_	4500		160	-0.0		-		-	0.003	120-83-2	DICHLOROPHENOL, 2,4-	
RRIDo (mg)Hq -1 (mg)Hq		×	[15000] 15023	[13100] 13071	1,2,3	20000	×	16	0.00000001			0.002	Ж -	0.00	75-09-2	DICHLOROMETHANE (METHYLENE CHLORIDE)
RIDD CSF6 RIC IUN Koc MOC7 Majanous Sol Mocanic Sol		×	15000	[13100] 130 <u>5</u> 3	1	6300	×	47	a namenana		[0		12 1	0.0	156-60-5	DICHLOROETHYLENE, TRANS-1,2-
RID RID RICSF	0	×	[15000] 14979	[13100] 13037	1	3500	×	49	Priklinkovilnik)2 1	0.00	156-59-2	DICHLOROETHYLENE, CIS-1,2-
RIIDo CSFo RICI IUR More	ر دن	×	[15000] 15119	[13100] 13145	1,4,5	2500	×	65	ale Saladari — de	0.2			15	0.0	75-35-4	DICHLOROETHYLENE, 1,1-
RIDO CSFO RICI		×	[15000] 14945	[13100] 13010	1,2,3,4	8412	×	38	0.000026		0	0.091		0.00	107-06-2	DICHLOROETHANE, 1,2-
RIDO CSFo RICI IUR Koc Maleous Sol From Maleous From From Maleous From From Maleous From From Maleous From From From From Maleous From F	<u>ن</u>	×	[15000] 14998	[13100] 13051	2	5000	×	52			n	-		0	75-34-3	DICHLOROETHANE, 1,1-
RTD- CSF- (mg/kg-d) (mg/m²) (mg/m²) (hg/m²)	نے	×	[15000] 15041	[13200] 13115		280	×	360	de als virsits meditentes	-			-2		75-71-8	DICHLORODIFLUOROMETHANE [FREON 12]
RTD0 CSF CSF (mg/kg-d) (mg/kg-d) (mg/m²) (µg/m²) (36				4,5,6	3.11		22000]			0.45			91-94-1	DICHLOROBENZIDINE, 3,3"-
RFD CSF (mg/kg-d)* (mg/mg-d)* (mg/mg-d)* (hg/m²)* (h	17/		[14900] 14850	[12900] 12943	1	82.9	×	510			C			0.0	106-46-7	DICHLOROBENZENE, P-
RfDo (mg/kg-d) CSFo (mg/kg-d) ¹ Rf(bg/d) ² Rf(bg/d) ² Rf(bg/d) ² Ligid (bg/m²) ² Koc (mg/L) VOC7 (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol (mg/L) Vol from SubSurface (mg/L) Politic (degrid) Politic (degrid) Politic (degrid) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol from SubSurface (mg/L) Politic (degrid) Politic (degrid) Aqueous Sol (mg/L) Vol from SubSurface (mg/L) Politic (degrid) Aqueous Sol (mg/L) Vol from SubSurface (mg/L) Politic (degrid) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol from SubSurface (mg/L) Aqueous Sol (mg/L)	173	×	[15100] 14849	[13100] 12942		106	×	360						0.0	541-73-1	DICHLOROBENZENE, 1,3-
RfDo (mg/kg-d) RfCi (mg/kg-d) Reference Surface Soil (mg/kg-d) X X X X X X X X X	180	×	[15100] 14855	[13100] 12946	1,4,5,6,7	147	×	350	as de susina	_			1 6	0.0	95-50-1	DICHLOROBENZENE, 1,2-
RIDO CSFo	150	×	[14800] 14847	[12900] 12940	9	850	×	215							110-57-6	DICHLORO-2-BUTENE, TRANS-1,4-
RfDo- (mg/kg-d) CSFo- (mg/kg-d) ⁻¹ RfCI (mg/kg-d) ⁻¹ liur (mg/kg) koc VOC7 (mg/L) Aqueous Sol (mg/L) Aqueous Sol Reference ⁺ Vol From Sulface (mg/L) TF Vol From Sulface Soli Vol Vol From Sulface Soli Vol Fol Ggranic (degrance) Pol Sulface (degrance) Vol From Sulface Soli Vol Vol From Sulface Soli Vol From Sulface Soli Vol Foli Ggranic Soli Pol Vol From Sulface Soli Vol Foli Soli V	156	×	[15000] 14851	[13100] 12943	9	850	×	180							764-41-0	DICHLORO-2-BUTENE, 1,4-
RiDo (mg/kg-d) CSFo (mg/kg-d)·¹ RiCi (mg/m³) luR (µg/m³)·¹ koc VOC? (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Voltagenic (mg/L) Poir (mg/L) Voltagenic (mg/L) Poir (mg/L) Voltagenic (mg/L) Aqueous Sol (mg/L) Voltagenic (mg/L) Poir (mg/L) Voltagenic (mg/L) Aqueous Sol (mg/L) Voltagenic (mg/L) Voltagenic (mg/L) Poir (mg/L) Voltagenic (mg/L) Aqueous Sol (mg/L) Voltagenic (mg/L) Voltagenic (mg/L) Voltagenic (mg/L) Voltagenic (mg/L) Aqueous Sol (mg/L) Voltagenic (mg/L) Voltagen	192	×	[14900] 14924	[12900] 12994	_	1000000	×	8.1			_	0.05	-	0.00	76-43-6	DICHLOROACETIC ACID
RfDo (mg/kg-d) (mg/kg-	329				4,5,6,8,10	5600		0.27)3	0.0	1918-00-9	DICAMBA
RfDo (mg/kg-d) CSFo (mg/kg-d)·* RfCI (mg/m³) (µg/m³)· (µg/m³)· Koc VOC7 (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol (vol from SubSurface Soil (mg/L) Vol from SubSurface (degrade C) Vol (mg/m²)· Vol from SubSurface (degrade C) Vol (mg/m²)· Vol (mg/m²)· Vol (mg/m²)· Vol (mg/m²)· Vol from SubSurface (degrade C) Vol (mg/m²)· Vol (mg/m²)· <td>340</td> <td>×</td> <td></td> <td></td> <td>1,2,3</td> <td>400</td> <td></td> <td>1600</td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td>0</td> <td>84-74-2</td> <td>DIBUTYL PHTHALATE, N-</td>	340	×			1,2,3	400		1600					1 1	0	84-74-2	DIBUTYL PHTHALATE, N-
RfDo (mg/kg-d) CSFo (mg/kg-d) ⁻¹ RfCI (mg/m³) (µg/m³) ⁻¹ (µg/m³) ⁻¹ Koc VOC7 (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol from (mg/m²) Vol from (mg/m²) Organic (paince) Poir (mg/m²) Vol from (mg/m²) Soli (degra Soli (96	×	[15100] 14858	[13100] 12948	1	11400	×	110		-	0		-	0.0	74-95-3	DIBROMOMETHANE
RfDo (mg/kg-d) CSFo (mg/kg-d)-1 RfCi (mg/m³) (µg/m³)-1 Koc VOC? Sol (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol (mg/m²) Vol from (mg/L) Vol from (mg/L) Vol from (mg/m²) Vol from (mg/	131	×	[15100] 14893	[13100] 12972	1,2,3,5	4150	×	54	0.0006	.009 1	0	2)9 1	0.00	106-93-4	DIBROMOETHANE, 1,2-(ETHYLENE DIBROMIDE)
RfDo (mg/kg-d) CSFo (mg/kg-d)* RfCl (mg/m³) (µg/m³)* (µg/m³)* Koc (µg/m³)* VOC? (mg/L) Aqueous Sol (mg/L) Aqueous Sol (mg/L) Vol (mg/m²)* Vol from (mg/kg-d)* Organic (degrated Soil (degr	220				1	20		1,600)1	0.0	106-37-6	DIBROMOBENZENE, 1,4-
RfDo CSFo RfCi IUR Koc VOC7 Sol Reference Soi Soil Soil Soil Soil Soil Soil Soil	196	×	[15000] 14856	[13000] 12946	4	1000	×	140		1002		-	_	0.000	96-12-8	DIBROMO-3-CHLOROPROPANE, 1,2-
RfDo CSFo RfCi IUR Koc VOC7 Sol Aqueous Sol From SubSurface Liquid	287		31445	23885	1,6,7,9	4.48	×	10233	i.				Н	0.00	132-64-9	DIBENZOFURAN
	Boiling Point legrees C)		TF Vol from SubSurface Soil	TF Vol from Surface Soil	Aqueous Sol Reference¹	Aqueous Sol (mg/L)	VOC7	Koc	IUR (μg/m³) ⁻¹	RfCi ng/m³)		CSFo (mg/kg-d)	9-d)	RfC (mg/k	CAS	Regulated Substance

'Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

Summary representation

I = Integrated Risk Information
I = TEP;
I = Integrated Risk Information
I = TEP;
I = T

Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references,

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] <u>0 = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides</u>
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

Appendix A

Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

			2	20000		0.23	0.000013 i C			0.045 C	8 1	0.00008	96-45-7	ETHYLENE THIOUREA (ETU)
×	[15100] 14938	[13100] 13004	2	1000000	×	4.4	and distributions	C	0.4		2 1		107-21-1	ETHYLENE GLYCOL
×	[14900] 14941	[13000] 13006	9	1000000	×	1					2 P	0.02	107-07-3	ETHYLENE CHLORHYDRIN
×	[15000] 14921	[13100] 12991	9,10	4635.5	×	22		30 P	0.3		9 H	0.09	97-63-2	ETHYL METHACRYLATE
×	[15100] <u>14908</u>	[13100] 12982	1	60400	×	68	-				2	0.2	60-29-7	ETHYL ETHER
×	[14900] 15014	[12900] 13056	2	365	×	240					2 E)O	[0.025] <u>0.05</u>	759-94-4	ETHYL DIPROPYLTHIOCARBAMATE, S- (EPTC)
×	15000	[13100] 13004	1,3,4	161	×	220	0.0000025 C	-		0.011 C	-	0.1	100-41-4	ETHYL BENZENE
×	[15100] 14863	[13100] 12951	1.2,6	15000	×	110	server-disduslate	ש	0.008	0.048 H	*0	0.005	140-88-5	ETHYL ACRYLATE
×	[15000] 14881	[13100] 12963	1,2,3,4,5,6	80800	×	59		P	0.07		9	0.9	141-78-6	ETHYL ACETATE
×	[15000] 15040	[13200] 13100	2	1000000	×	12		-	0.2		9 P	0.09	110-80-5	ETHOXYETHANOL, 2- (EGEE)
×			4,6,9,10	0.85		8700	_				5 1	0.0005	563-12-2	ETHION
			12	1240000		2					5	0.005	16672-87-0	ETHEPHON
×	[14900] 14893	[13000] 12972	1,3,4	65800	×	35	0.0000012	-	0.001	0.0099 1	9	0.006	106-89-8	EPICHLOROHYDRIN
			4,6,7,9	0.23		11000		_			3 1	0.0003	72-20-8	ENDRIN
			2	100000		120					2 1	0.02	145-73-3	ENDOTHALL
			7,9	0.117		2300					Н	0.006	1031-07-8	ENDOSULFAN SULFATE
			6	0.45		2300					-	0.006	33213-65-9	ENDOSULFAN II (BETA)
			6	0.5		2000					-	0.006	959-98-8	ENDOSULFAN I (ALPHA)
			4	0.48		2,000	l I-ush				1	0.006	115-29-7	ENDOSULFAN
			2,4,5	42		300	_				2 1	0.002	330-54-1	DIURON
	[14900] 14899	[13000] 12976	15	3000	×	22.7					_	0.01	505-29-3	DITHIANE, 1,4-
×			4,5,6	25		1000	_				4	0.00004	298-04-4	DISULFOTON
			5	700000		2.6					2	0.0022	85-00-7	DIQUAT
	15446	13375	. 6	0.252	×	660	0.00022 1			0.8			122-66-7	DIPHENYLHYDRAZINE, 1,2-
			3	300		190					10 🖺	[0.025] <u>0.1</u>	122-39-4	DIPHENYLAMINE
Organic Point Liquid (degrees C)	Vol from SubSurface Soil	Vol from Surface Soil	Aqueous Sol Reference ¹	Aqueous Sol (mg/L)	V0C7	Koc	IUR (µg/m³) ¹	۳.	RfCl (mg/m³)	CSFo (mg/kg-d) ⁻¹	9-9) °	RfDo (mg/kg-d)	CAS	Regulated Substance

Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

[N = EPA NCEA Provisional Values] <u>O = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate</u>

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water

M = EPA Drinking Water
TE = TERA ITER Peer-Reviewed Value
Regulations and Health Advisories
X = EPA Provisional Peer-Reviewed Toxicity
Value Appendix [T = TEF]

Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

METHYL N-BUTYL KETONE (2- HEXANONE)	METHYL ISOCYANATE	METHYL ISOBUTYL KETONE	METHYL HYDRAZINE	METHYL ETHYL KETONE	METHYL CHLORIDE	METHYL ACRYLATE	METHYL ACETATE	METHOXYETHANOL, 2-	METHOXYCHLOR	METHOMYL	METHANOL	METHAMIDOPHOS	METHACRYLONITRILE	MERPHOS OXIDE	MANEB	MALEIC HYDRAZIDE	MALATHION	KEPONE	SOPROPYL METHYLPHOSPHONATE	SOPHORONE	SOBUTYL ALCOHOL	PRODIONE	NDENO[1,2,3-CD]PYRENE	Regulated Substance
591-78-6	624-83-9	108-10-1	60-34-4	78-93-3	74-87-3	96-33-3	79-20-9	109-86-4	72-43-5	16752-77-5	67-56-1	10265-92-6	126-98-7	78-48-8	12427-38-2	123-33-1	121-75-5	143-50-0	1832-54-8	78-59-1	78-83-1	36734-19-7	193-39-5	CAS
0.005		0.08 H	0,001 P	i 9:0		0.03 Н	1 [王]	0.005 P	0.005	0.025	[0.5] 2	0.00005	0.0001	[0.00003] [i] 0.001 O	0.005	0.5	0.02	0.0003	0.1	0.2	0.3	0.04		RfDo (mg/kg-d)
			5		0.013 H										0.0601 0			10		0.00095		0.0439 0	1,2 C	CSFo (mg/kg-d) ⁻¹
0.03	0.001 C	3 1	0.00002 X	5	0.09	0.02 P		0.02 1			[4] <u>20</u> [C]		0.03 P					_		2 C				RfCi (mg/m³)
*****************	^~2+10.4%	41-64-1-2	0.001 X	Saft affaithrasm	0.0000018 H	modulo vis		http://www.d	-	0.14	NP salvabalni		nini tahini		***	7-014		0.0046 C			American del de		0,00011 C	IUR (µg/m³)·1
54	10	17		32	6	55	30		63000	20	2.8	5	21	53,000	_	2.8	1300	55000	1.84	31	60	1,100	31000000	Koc
×	×	×	×	×	×	×	×	×			×		×								×			VOC7
17500	100000	19550	1000000	275000	6180	52000	243500	1000000	0.045	58000	1000000	2000000	25700	2,3	23	6000	143	7.6	50000	12000	81000	13	0.062	Aqueous Sol (mg/L)
1	7	1,2,4,5	2	1,2,3,4,5	1,2,3,4	1,2,5	4,5,6	2	4,5,6	2	2	5	1	8,10,12	9,13	4	4	4	13	2.4.5	1,2,3,4,5	2	5	Aqueous Sol Reference¹
[13100] 12955	[13000] 13021	[13100] 12983	[1300] 13011	[13100] 12974	[13200] 13103	[13100] 12971	[13100] 12982	[13100] 13141			[13100] 13025		[13100] 12994								[13000] 12954			TF Vol from Surface Soil
[15100] 14868	[15000] 14959	[15100] 14910	[14900] 14947	[15100] 14897	[15000] 15038	[15100] 14892	[15100] 14908	[15000] 15115			[15100] 14964		[15100] 14925								[14900] 14866			TF Vol from SubSurface Solt
×	×	×	×	×	×	×	×	×			×	2	×	×			×	9	×	×	×			Organic Liquid
128	40	117	88	80	-24	70	57	124	346	228	65	223	90	392	351	260	351	350	230	215	108	545	536	Boiling Point (degrees C)
		18.07	5.27	2.57	4.50	18.07		4.50	0.69		36.14						2.46	0.17		4.5	17.57		0.17	Degradation Coefficient (K)(yr¹)

¹Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

[N = EPA NCEA Provisional Values] O =
EPA Office of Pesticide Programs Human
Health Benchmarks for Pesticides
P = EPA Provisional Peer-Reviewed Toxicity Value
S = surrogate

Regulations and Health Advisories TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix [T = TEF]

NITROPROPANE, 2.	NITROPHENOL, 4-	NITROPHENOL, 2-	NITROGUANIDINE	NITROBENZENE	NITROANILINE, P-	NITROANILINE, O-	NAPROPAMIDE	NAPHTHYLAMINE, 2-	NAPHTHYLAMINE, 1-	NAPHTHALENE	MONOCHLOROACETIC ACID	MEVINPHOS	METRIBUZIN	METOLACHLOR	METHYLSTYRENE, ALPHA	METHYLNAPHTHALENE, 2-	METHYLENE BIS(2-CHLOROANILINE), 4,4'-	METHYLCHLOROPHENOXYACETIC ACID (MCPA)	METHYL TERT-BUTYL ETHER (MTBE)	METHYL STYRENE (MIXED ISOMERS)	METHYL PARATHION	METHYL METHANESULFONATE	METHYL METHACRYLATE	Regulated Substance
79-46-9	100-02-7	88-75-5	556-88-7	98-95-3	100-01-6	88-74-4	15299-99-7	91-59-8	134-32-7	91-20-3	79-11-8	7786-34-7	21087-64-9	51218-45-2	98-83-9	91-57-6	101-14-4	94-74-6	1634-04-4	25013-15-4	298-00-0	66-27-3	80-62-6	CAS
	0.008 [N]	0.008 S	0.1 1	0.002	0.004 P	0.01 X	[0.1] <u>0.12</u> [1]			0.02 1	0.002 H	0.000025 O	0.025	0.15	0.07 H	0,004 1	0,002 P	0.0005		0.006 H	0.00025		1.4	RfDo (mg/kg-d)
					0.02 P			1.8 C	1.8 [S] C	0.12 C							0.1 P		0.0018 C	1000 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.099 C		CSFo (mg/kg-d)*1
0.02				0.009	0.006 P	0.00005 X				0.003 1						0 003 S			3 1	0.04 H			0.7	RfCi (mg/m³)
0.0027 H			4 4	0.00004	-9.446		400.00	[0.00051] [C]	[0.00051] [S]	0.000034 C		1			-who all recorded		0.00043 C	-	0.00000026 C	mass spiraling (ST-day		0.000028 C	44-1-44-6-4	IUR (µg/m³)·1
20	230	37	0.13	130	15	27	880	87	3200	950	0.24	44	.95	182	660	16000	000'E	112	12	2,200	790	5.2	10	Koc
×	×	×		×		×			ı×	×	×	×		×	×	×			×	×			×	V0C7
16700	16000	2100	4400	2000	800	1200	70	6.4	1690	36	858000	600000	1200	530	560	25	13.9	1000	45000	89	25	200000	15600	Aqueous Sol (mg/L)
1,3,4,5	2	1.2.3.4.5.6	9	2	2	6	2	6	2	ω	17	100	1,5	1,5	9	1	10	5,6,8,9	1,2,4,6	g	4,5,6	2	1	Aqueous Sol Reference¹
[13000] 12984	12960	12966		12940		12967			15517	13284	[13000] 13008	12947		[13000] 13035	[13100] 12942	12955			[13100] 13014	[13100] 12945			[13100] 13001	TF Vol from Surface Soil
[14900] 14911	14878	14884		14847		14886			18386	15323	[14900] 14943	14856		[15000] 14985	[15100] 14850	14870			[15100] 14950	[15000] 14853			[15100] 14934	TF Vol from SubSurface Soil
×				×										×	×				×	×		×	×	Organic Liquid
120	279	215	231	211	332	284	399	306	301	218	189		367	100	165	241	379	287	55	163	348	203	100	Boiling Point (degrees C)
0.69	25.81	9.01		0.64				0.69	0,69	0.98								1.39	0.69		3.61		4,50	Degradation Coefficient (K)(yr¹)

1Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate TE = TERA ITER Peer-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix [T = TEF]

Appendix A

Table 5 – Physical and Toxicological Properties

A. Organic Regulated Substances

PERFLUOROBUTANE SULFONATE (PFBS)	PENTACHLOROPHENOL	PENTACHLORONITROBENZENE	PENTACHLOROETHANE	PENTACHLOROBENZENE	PEBULATE	[PCB-1260 (AROCLOR)]	PCB-1254 (AROCLOR)	[PCB-1248 (AROCLOR)]	[PCB-1242 (AROCLOR)]	[PCB-1232 (AROCLOR)]	[PCB-1221 (AROCLOR)]	PCB-1016 (AROCLOR)	PCBS, TOTAL (POLYCHLORINATED BIPHENYLS) (AROCLORS)	PARATHION	PARAQUAT	DXAMYL (VYDATE)	DCTYL PHTHALATE, DI-N-	NITROSO-N-ETHYLUREA, N-	NITROSODIPHENYLAMINE, N-	NITROSODI-N-PROPYLAMINE, N-	NITROSO-DI-N-BUTYLAMINE, N-	NITROSODIMETHYLAMINE, N-	NITROSODIETHYLAMINE, N-	Regulated Substance
375-73-5	87-86-5	82-68-8	76-01-7	608-93-5	1114-71-2	[11096-82- 5]	11097-69-1	[12672-29- 6]	[53469-21- 9]	[11141-16- 5]	[11104-28- 2]	12674-11-2	1336-36-3	56-38-2	1910-42-5	23135-22-0	117-84-0	759-73-9	86-30-6	621-64-7	924-16-3	62-75-9	55-18-5	CAS
0.02 P	0.005 1	0.003		0.0008	0.05 H		0.00002					0.00007		[0.006] [H]	0.0045	0.025	0.01 P					0.000008 P		RfDo (mg/kg-d)
	0,4	0.26 H	0.09 P			[2] [5]	[2] [5]	[2] [5]	[2] [5]	[2] [5]	[2] [S]	[2] [5]	2 1					27 C	0.0049 1	7 1	5.4 1	51 1	150	CSFo (mg/kg-d) ⁻¹
																		_	_	_	_	0.00004 X		RfCi (mg/m³)
	[0.0000046] C 0.0000051					[0.00057] [S]	[8] [25000.0]	[S] [S0000-0]	[0.00057] [5]	[S] [S000057]	[0.00057] [S]	***	<u>0.0001</u> !				5-6	0.0077 ; C	0.0000026 C	0.002 C	0.0016	0.014 1	0.043	IUR (µg/m³)·¹
61.7	20000	7900	1905	32000	630	[1800000]	810000	[190000]	[48000]	[1500]	[1900]	110000	78100	2300	16200	7.1	980000000	2	580	11	450	8.5	26	Koc
			×																×	×	×	×	×	VOC?
56600	14	0.44	480	0.74	92	[0.08]	0.057	[0.054]	[0.1]	[1.45]	[0.59]	0.25	0.0505	20	660000	280000	3	13000	35	9900	1200	1000000	93000	Aqueous Sol (mg/L)
19	1,2,4,5	4,6,8	1,3	1.5.6.7	5	[5]	5	[7,9,11]	[5]	[7]	[5]	th.	10,13	2,4,5,6,7	6,8	2	ហ	9	1	6	9, 10, 11	2	10	Aqueous Sol Reference ¹
ŀ			[13100] 13120																13148	12986	13008	[13000] 13001	[13000] 12974	TF Vol from Surface Soil
			[15100] 15102																15140	14914	14946	[14900] 14934	[14900] 14896	TF Vol from SubSurface Soil
ı×			×		×		×	ĮΧ	[X]	X	×	×		×			×			×	×	×	×	Organic Liquid
211	310	328	160	277	303	[385]	365	[340]	[325]	[290]	[275]	325	360	375	352	334	234	223	269	206	235	154	176	Boiling Point (degrees C)
	0.17	0.36		0.37					0.0								0.69	1734.48	3.72	0.69	0.69	0.69	0.69	Degradation Coefficient (K)(yr¹)

1Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources:
C = California EPA [Cancer
Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

Regulations and Health Advisories TE = TERA ITER Pecr-Reviewed Value X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

'Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T=TEF]

Appendix A

Table 5 – Physical and Toxicological Properties
A. Organic Regulated Substances

司	70	ᆼ	ਰ	ਰ	ె	<u>_</u>	글	一肃	計	冒	H		Ē	i ii	2:3	局	温	屌	屈	<u> </u>	S	<u>s</u>	낁	곴	ROX	
TRIALLATE	TOXAPHENE	TOLUIDINE, P-	TOLUIDINE, O-	TOLUIDINE, M-	TOLUENE	THIRAM	THIOFANOX	TETRAHYDROFURAN	TETRAETHYLDITHIOPYROPHOSPHATE	ETRAETHYL LEAD	TETRACHLOROPHENOL, 2,3,4,6-	TETRACHLOROETHYLENE (PCE)	TETRACHLOROETHANE, 1,1,2,2-	TETRACHLOROETHANE, 1,1,1,2-	TETRACHLORODIBENZO-P-DIOXIN, 2.3.7.8- (TCDD)	ETRACHLOROBENZENE, 1.2.4,5	TERBUFOS	(ERBACIL	TEBUTHIURON	STYRENE	STRYCHNINE	SIMAZINE	RONNEL	RESORCINOL	X	Regulated Substance
2303-17-5	8001-35-2	106-49-0	95-53-4	108-44-1	108-88-3	137-26-8	39196-18-4	109-99-9	3689-24-5	78-00-2	58-90-2	127-18-4	79-34-5	630-20-6	-		13071-79-9	5902-51-2	34014-18-1	100-42-5	57-24-9	122-34-9	299-84-3	108-46-3	121-82-4	CAS
[0.013] 0.025	[0.0004] 0.00009	0.004			0.08	[0.005] 0.015	0.0003	0.9	0.0005	0.0000001	0.03	0.006	0.02	0.03	0.0000000007	0.0003	0.000025	0.013	0.07	0.2	0.0003	0.005	0.05	2	[0.003] 0.004	RfDo (mg/kg-d)
o=	Z.or	×			_	03	Ξ	_			_	_	_			_	Ξ	=	=	-	-	=	Ι	Œ	_	
0.717 Q	1.1	0.03 P	0.016 P	0.016 S				0.0076				0.0021	0.2	0.026	130000 C	├				Ж	-	0.12 H			0.08	CSFo (mg/kg-d) ⁻¹
,0		_	_	<u>"</u>			L	-3							500	L	L	L	_			Ė	H	L	30963	
					5 -			2 -				0.04			0.000000004 C					-						RfCI (mg/m³)
		_	_	-			L	0				0				L	L	L	L			_		L		
	0.00032	B-site	0.000051	0.000051	*******		_	0.00000194		_		0.000000026	0.000058	0.0000074	38		dest	siele	-turvita				_	_		IUR (µg/m³)-1
			င	S			L	Z	L					_	n	L		L								
2,000	1500	320	410	140	130	1000	0.022	43	550	4900	6200	300	79	980	4300000	1,800	510	53	620	910	280	110	580	2	70	Koc
					×			×				×	×	×						×						V0C7
4	3	7410	15000	15030	532.4	30	5200	300000	25	0.8	183	162	2860	1100	0.0000193	0.583	5	710	2500	300	143	5	40	717000	59.9	Aqueous Sol (mg/L)
	2,4,5	1,2,3	1,3,5		1,2,3,4			1,6,7				1,2,3,4,5				1,5.6.7									1,9	Aqueous Sol Reference¹
5	5	3	5	6	4 [13100] 13016	4	9	7 [13100] 12970	2	Ct	6	5 [13100] 13017	2 [13100] 12957	1 [13000] 12990	6	7	6	2	2	5 [13100] 12942	5	St.	2		9	TF Vol from Surface Soil
	-				[15000] 14953			[15100] 14891				[15000] 14955	[15100] 14871	[14600] 14921						[15100] 14850						TF Vol from SubSurface Soil
×			×	×	×			×	×	×		×	×	×			×			×						Organic Liquid
343	432	200	200	203	111	339	280	66	349	202	288	121	147	131	412	245	332	396	394	145	270	225	349	280	353	Boiling Point (degrees C)
			18.07		9.01					4.50	0.69	0.03	0.56	3.79	0.21	0 69				1.20	4.50					Degradation Coefficient (K)(yr¹)

Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level H = Health Effects Assessment Summary Table (HEAST) I = Integrated Risk information
 System (IRIS)
 M = EPA Drinking Water
 Regulations and Health Advisories

[N = EPA NCEA Provisional Values] <u>O = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides</u>
P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate [T=TEF]

100	2	1		
116 X 18	\neg	x 1800 2,3,5 [1	X 1800 2,3,5 [13000] [:	X 1800 2,3,5 [13000] [
660 X 4		×	X 48.9 1	X 48.9 1 [13100] [-
2,200 X	X 56 1	X 56	X 56 1	X 56 1 [13100] [1
720	4 2,5,6,7	4 2,5,6,7	4 2,5,6,7	4 2,5,6,7
6 10000	1000000 12	1000000 12	1000000 12	1000000 12
51 X 550	X 55000 1,4	× 55000	X 55000 1,4	X 55000 1,4 [13100] [1
190 X 27		X 2700 14 1	X 2700 14 1	X 2700 14 13100] I
280 X 18		X 1896	X 1896 1,4,6 I	X 1896 1,4,6 [13100] [
24 × 27	× 2700 14	× 2700	× 2700 14 [X 2700 14 [13100] [
1700	140 2	140 2	140 2	140
43 2	278 2,4,5	278	278	278
1100	1100 850 1,2,4,5	850	850	850
2400 10	2400 1000 1.2,4	1000	1000 1.2,4	1000 1.2,4
93 × 11	X 1100 1	X 1100 1 [X 1100 1 [1	X 1100 1 [13100] [
76 X 44	X 4420 1	X 4420 1 1	X 4420 1 1	X 4420 1 [13100] [
	X 1495 1,4,5,6	X 1495	X 1495 1,4,5,6 [X 1495 1,4,5,6 [13100] [:
×	X 58 5	X 58 5	X 58 5 15677	X 58 5 15677 18611
×	X 44.4	X 44.4 1,4,6,7	X 44.4 1,4.6,7 13217	X 44.4 1,4.6,7 13217
20 X 12000	7	x 1200000 2,3,5,9	X 1200000 2,3,5,9 13291	X 1200000 2,3,5,9 13291
1,200 X 1	X 170 1	X 170 1 1	X 170 1 1	X 170 1 [13100] [
130 × 30	X 3050 1,2,3,4	x 3050	X 3050 1,2,3,4 [X 3050 1,2,3,4 [13100] 12942
Koc VOC? Aqueou Sol (mg/L)	VOC7 Aqueous Aqueous Sol Sol (mg/L) Reference ¹	VOC? Aqueous Aqueous Sol Vol From Sol Reference¹ Surface Soil	VOC? Sol (mg/L) Aqueous Sol Aqueous Sol From SubSurface Soil TF Vol From SubSurface Soil	VOC? Aqueous Aqueous Sol Vol Sol Reference¹ (mg/L) TF Vol Vol Sol Soll

'Aqueous solubility references are keyed to the numbered list found at §250.304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources: C = California EPA [Cancer Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
I = Integrated Risk information
System (IRIS)
M = EPA Drinking Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] Q = EPA Office of Pesticide Programs Human Health Benchmarks for Pesticides P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

ZINEB		XYLE	WARF	VINYL	VINYL	
3		YLENES (TOTAL)	VARFARIN	VINYL CHLORIDE	VINYL BROMIDE (BROMOETHENE)	Regulated Substance
12122-67-7		1330-20-7	81-81-2	75-01-4	593-60-2	CAS
0.05		0.2	0.0003	0.003		RfDo (mg/kg-d)
			_	1.5		CSFo (mg/kg-d)*
		0.1		0.1	0.003	RfCi (mg/m³)
1		63		0.000009)	0.000032 Н	IUR (µg/m³)-¹
19		350	910	10	150	Koc
		×		×	×	V0C?
10		175	17	2700	4180	Aqueous Sol (mg/L)
4		13	4	1	12	Aqueous Sol Reference ¹
	12982	[13100]		[13200] 13109	[13100] 13086	TF Vol from Surface Soil
	14909	1150001		[15000] 15040	[15000] 15043	TF Vol from SubSurface Soil
	;	×		×	×	Organic Liquid
474	. 10	140	356	-13	16	Boiling Point (degrees C)
	0	0.60	4.50	0.09	0.09	Degradation Coefficient (K)(yr¹)

'Aqueous solubility references are keyed to the numbered list found at §250,304(f). Where there are multiple sources cited. The table value is the median of the values in the individual references.

Toxicity Value Sources:
C = California EPA [Cancer
Potency Factor]

D = ATSDR Minimal Risk Level
H = Health Effects Assessment
Summary Table (HEAST)
1 = Integrated Risk information
System (RRIS)
M = EPA Drinkling Water
Regulations and Health Advisories

[N = EPA NCEA Provisional Values] <u>O</u> = <u>EPA Office of Pesticide Programs Human</u> <u>Health Benchmarks for Pesticides</u> P = EPA Provisional Peer-Reviewed Toxicity Value S = surrogate

[T = TEF]

Regulated Substance	CAS	RfDo (mg/kg-c	1)	CSFo (mg/kg-d)- ¹	RfCi (mg/m³)		IUR (ug/m³)-	1	Kd
ALUMINUM	7429-90-5	1	P			0.005	Р			9.9
ANTIMONY	7440-36-0	0.0004	_			. 15				45
ARSENIC	7440-38-2	0.0003	1	1.5	П	0.000015	C	0.0043	1	29
BARIUM AND COMPOUNDS	7440-39-3	0.2	l l			0.0005	Н			41
BERYLLIUM	7440-41-7	0.002	- 1		57	0.00002	1	0.0024	Ш	790
BORON AND COMPOUNDS	7440-42-8	0.2	1			0.02	H			3
CADMIUM	7440-43-9	0.0005	ı			0.00001	D	0.0018		75
CHROMIUM III	16065-83- 1	1.5	T	4						1,800,000
CHROMIUM VI	18540-29- 9	0.003	T	[0.42] <u>0.5</u>	С	0.000008	1	[0.084] 0.012	il;	19
COBALT	7440-48-4	0.0003	Р			0.000006	Р	0.009	Р	45
COPPER	7440-50-8	[0.037] 0.0325	Н	, r						430
CYANIDE, FREE	57-12-5	0.0006	1			0.0008	I			9.9
FLUORIDE	16984-48- 8	0.04	С	73		0.013	С			(I)
IRON	7439-89-6	0.7	Р			,		4		25
LEAD	7439-92-1			0.0085	С			0.000012	С	900
LITHIUM	7439-93-2	0.002	Р							300
MANGANESE	7439-96-5	[0.047] 0.14	1			0.00005	1			65
MERCURY	7439-97-6	0.00016	С			0.0003	Ι			52
MOLYBDENUM	7439-98-7	0.005	ı							20
NICKEL	7440-02-0	0.02	I I			0.00009	D	0.00024	ls	65
NITRATE NITROGEN	14797-55- 8	1.6	1			*:				
NITRITE NITROGEN	14797-65- 0	0.1	1							(i
PERCHLORATE	7790-98-9	0.0007						j		- 0
SELENIUM	7782-49-2	0.005	1			0.02	С	0		5
SILVER	7440-22-4	0.005	1							8.3
STRONTIUM	7440-24-6	[0.06] <u>0.6</u>	1							48 G
THALLIUM	7440-28-0	0.00001	Х							71
TIN	7440-31-5	0.6	Н							250
VANADIUM	7440-62-2	0.00007	Р			0.0001	D			1,000
ZINC	7440-66-6	0.3	1			,				62

Toxicity Value Sources:

C = California EPA Cancer Potency Factor

D = ATSDR Minimal Risk Level

H = Health Effects Assessment Summary Table (HEAST)

1 = Integrated Risk Information System (IRIS)

P = EPA Provisional Peer-Reviewed Toxicity Value

X = EPA Provisional Peer-Reviewed Toxicity Value Appendix

s = surrogate

Appendix A Table 6 – Threshold of Regulation Compounds

	Non-Residential Soil MSCs	Surface Subsurface Groundwater ¹	n) (n	0-2 feet 2-15 feet	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5		100 100 0.5	100.	100	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100	100	100	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	100 100 0.5	
	Residential	Soil	(mg/kg)	0-15 feet	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	0231100	GROUNDWATER	(ng/L)		5	5	22	5	. 2	5	5	5	5	2	S	5	5	5	5	2	5	5	5	5	5	2	5	5	2	2	
	- 41	CASRN			64-19-7	108-24-7	628-63-7	626-38-0	86-88-4	319-86-8	101-55-3	123-86-4	105-46-4	540-88-5	109-73-9	13765-19-0	156-62-7	353-50-4	120-80-9	110-75-8	7005-72-3	17702-41-9	109-89-7	7/5/2238	131-11-3	77-78-1	122-09-8	78-34-2	62-50-0	75-04-7	
The second secon		REGULATED			ACETIC ACID	ACETIC ANHYDRIDE	AMYL ACETATE, N-	AMYL ACETATE, SEC-	ANTU (ALPHA-NAPHTHYLTHIOUREA)	BHC, DELTA	BROMOPHENYL PHENYL ETHER, 4-	BUTYL ACETATE, N-	BUTYL ACETATE, SEC-	BUTYL ACETATE, TERT-	BUTYLAMINE, N-	CALCIUM CHROMATE	CALCIUM CYANAMIDE	CARBONYL FLUORIDE	CATECHOL	CHLOROETHYL VINYL ETHER, 2-	CHLOROPHENYL PHENYL ETHER, 4-	DECABORANE	DIETHYLAMINE	DIGLYCIDYL ETHER (DGE)	DIMETHYL PHTHALATE	DIMETHYL SULFAITE	DIMETHYLPHENETHYLAMINE, ALPHA, ALPHA-	DIOXATHION	ETHYL METHANESULFONATE	ETHYLAMINE	

Appendix A Table 6 – Threshold of Regulation Compounds

			Residential	Non-Resi M	Non-Residential Soil MSCs	
REGULATED	CASRN	ALL AQUIPER GROUNDWATER MSC	Soil	Surface	Subsurface	Soil to Groundwater¹
SUBSTANCE	#6	(na/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
			0-15 feet	0-2 feet	2-15 feet	
FENSULFOTHION	115-90-2	S	100	100	100	0.5
HEXACHLOROPROPENE	1888-71-7	5	100	100	100	0.5
IODOMETHANE	74-88-4	5	100	100	100	0.5
ISOAMYL ACETATE	123-92-2	2	100	100	100	0.5
ISOBUTYL ACETATE	110-19-0	5	100	100	100	0.5
SODRIN	465-73-6		100	100	100	0.5
ISOPHORONE DIISOCYANATE	4098-71-9	2	100	100	100	0.5
ISOSAFROLE	120-58-1	2	100	100	100	0.5
LITHIUM HYDRIDE	7580-67-8	9	100	100	100	0.5
MANGANESE CYCLOPENTADIENYL	12079-65-1	5	100	100	100	0.5
METHYL ISOAMYL KETONE	110-12-3	3	100	100	100	0.5
METHYL MERCAPTAN	74-93-1	2	100	100	100	0.5
METHYLAMINE	74-89-5	S.	100	100	100	0.5
IMEVINPHOSI	[7786-34-7]	[6]	[100]	[100]	[100]	[0.5]
MONOCROTOPHOS	6923-22-4	5	100	100	100	0.5
NAPHTHOQUINONE, 1,4-	130-15-4	ιΩ	100	100	100	0.5
NITRIC ACID	7697-37-2	5	100	100	100	0.5
NITROQUINOLINE-1-OXIDE, 4-	56-57-5	5	100	100	100	0.5
OSMIUM TETROXIDE	20816-12-0	5	100	100	100	0.5
PENTABORANE	19624-22-7	5	100	100	100	0.5
PERCHLOROMETHYL MERCAPTAN	594-42-3	2	100	100	100	0.5
PICOLINE, 2-	109-06-8	3	100	100	100	0.5
PROPANOL, 1-	71-23-8	ည	100	100	100	0.5
PROPIONIC ACID	79-09-4	ស	100	100	100	0.5
PROPIONITRILE (ETHYL CYANIDE)	107-12-0	5	100	100	100	0.5
PROPYLENE IMINE	75-55-8	5	100	100	100	0.5
[PYRETHRUM]	[8003-34-7]	[5]	[100]	[100]	[100]	0.5
QUINONE (p-BENZOQUINONE)	106-51-4	5	100	100	100	0.5

Appendix A

Table 6 - Threshold of Regulation Compounds

		Soil to Groundwater [†]	(mg/kg)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Non-Residential Soil MSCs	Subsurface Soil	(mg/kg)	2-15 feet	100	100	100	100	100	100	100	100	100	100	100
:	Non-Kes	Surface Soil	(mg/kg)	0-2 feet	100	100	100	100	100	100	100	100	100	100	100
	Residential	Soil MSC (malka)	(Sy/Siii)	0-13 Jeel	100	100	100	100	100	100	100	100	100	100	100
	All AOUIFER	GROUNDWATER	(µg/L)		2	5	2	5	5	5	5	S	5	5	S
	59	CASRN	5350	1,000	1-62-2847	7631-90-5	18496-25-8	10025-67-9	7664-93-9	13494-80-9	7783-80-4	107-49-3	509-14-8	297-97-2	126-68-1
		REGULATED SUBSTANCE	22		SELENIUM HEXAFLUORIDE	SODIUM BISULFITE	SULFIDE	SULFUR MONOCHLORIDE	SULFURIC ACID	TELLURIUM	TELLURIUM HEXAFLUORIDE	TEPP (TETRAETHYL PYROPHOSPHATE)	TETRANITROMETHANE	THIONAZIN	TRIETHYLPHOSPHOROTHIOATE, 0,0,0-

The value in the table is 100 time the groundwater MSC.

The option to use the SPLP is also available to calculate the soil to groundwater numeric value (See §250.310)

APPENDIX A

Table 7

DEFAULT VALUES FOR CALCULATING MEDIUM-SPECIFIC CONCENTRATIONS FOR LEAD

[Input Values Used in UBK Model for Lead

[(for residential exposure scenario) **Drinking** water Model default Geometric Standard Deviation 1.42 intake (default) (GSD) Outdoor air lead concentration $0.2 \mu g/m^3$ (default) Soil lead level 495 μg/g Indoor dust lead $495 \mu g/g$ Indoor air lead concentration 30 (% of outdoor) level 45 Model default Soil/dust ingestion Time spent outdoors weighting factor (%) Paint lead intake Model default Model default Ventilation rate Infant model Lung absorption Model default Maternal contribution method Mother's blood 7.5 µg/dL blood Model default Dietary lead intake lead at birth (model default) Target blood lead 10 µg/dL blood GI method/bioavailability Non-linear level Lead concentration in drinking $4.00 \, \mu g/L$

[Input Values Used in SEG (for nonresidential exposu	
Concentration of lead in soil (S)	987 μg/g
Target blood lead level in adults (T)	20 μg/dL blood
Geometric standard deviation of blood lead distribution (G)	1.4
Baseline blood lead level in target population (B)	4 μg/dL blood
Number of standard deviations corresponding to degree of protection required for the target population (n)	1.645 (for 95% of population)
Slope of blood lead to soil lead relationship (δ)	7.5 µg/dL blood per µg/g soil]

(default)]

water

REFERENCE

WIXSON, B.G. (1991). The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil. <u>Trace Substances in Environmental Health</u>. 11-20.]

Input Values Used in IEUBK			
(for residential exposur			
Parameter	Value		
		tant Value: 0.1	
Dietary Lead Intake (μg/day)	Age (Years)	Input	
	<u>0-1</u>	2.26	
	1-2	1.96	
	2-3	2.13	
	3-4	2.04	
	<u>4-5</u>	1.95	
	<u>5-6</u>	2.05	
	6-7	2.22	
Water Consumption (L/day)	Age (Years)	Input	
	0-1	0.2	
	1-2	0.5	
	2-3	0.52	
	3-4	0.53	
	4-5	0.55	
	5-6	0.58	
	6-7	0.59	
Use Alternate Water Value?	NO		
Lead concentration in drinking water (µg/L)			
MEDIA	ABSORPTION FRACTIO		
	PERCI		
Soil	30		
Dust	30		
Water	50		
Diet	50		
Alternate	0		
Calculate PRG	_		
Select Age Group for Graph	0 to 84 m	onths	
Change Cutoff	TBI		
Change GSD	1.6		
Probability of Exceeding the Cutoff	5		

	Input Values Used in the Adu	ılt Lead Model (ALM)
	(for non-residential ex	posure scenario)	
<u>Variable</u>	Description of Variable	Units	Value
PbB _{fetal, 0.95}	Target PbB in fetus	μg/dL	TBD
Rfctal/maternal	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	μg/dL per μg/day	0.4
<u>GSD</u> i	Geometric standard deviation PbB	_	1.8
PbB_0	Baseline PbB	μg/dL	0.6

IRs	Soil ingestion rate	g/day	0.050
AFs, D	Absorption fraction		0.12
EF _{S, D}	Exposure frequency	days/yr	219
AT _{S, D}	Averaging time	days/yr	<u>365</u>

× × ×

	*	Mat Se
ABI	a a	es W S
		20
		A gr
	e.	
ed:		20
	74	
		;; ;2

Cleanup Standards Scientific Advisory Board To the Pennsylvania Department of Environmental Protection

November 4, 2019

VIA ELECTRONIC MAIL

The Honorable Patrick McDonnell
Secretary
Pennsylvania Department of Environmental Protection
Rachel Carson State Office Building
401 Market Street
Harrisburg, PA 17105-2063

Re: Proposed Amendments to 25 Pa. Code Chapter 250

Dear Secretary McDonnell:

The Cleanup Standards Scientific Advisory Board ("CSSAB") has been working for more than a year with the Pennsylvania Department of Environmental Protection (the "Department") regarding proposed changes to the regulations implementing the Pennsylvania Land Recycling and Environmental Remediation Standards Act ("Act 2") as set forth in 25 Pa. Code Chapter 250. The Department has expended significant time and energy in developing the proposed regulations and should be commended for this effort.

At the meeting with the CSSAB on October 29, 2019, the Department reviewed the version of the proposed regulations that the Department intends to submit to the Environmental Quality Board ("EQB") for consideration by the EQB at its meeting on November 19, 2019. While the Department shared with the CSSAB proposed changes to the regulations in 25 Pa. Code Chapter 250 and the tables contained in Appendix A of 25 Pa. Code Chapter 250, other documents such as the preamble to the proposed regulations and the regulatory cost analysis were not provided to the CSSAB. During discussions at the meeting, the Department represented that it had not made any additional proposed changes to the tables in Appendix A of 25 Pa. Code Chapter 250 beyond those reviewed during the CSSAB meeting on June 12, 2019. The Department also clarified that the medium specific concentrations ("MSCs") in the proposed tables in Appendix A of 25 Pa. Code Chapter 250 for total concentrations of polychlorinated biphenyls ("PCBs") versus Aroclor-specific concentrations of PCBs are to be used on an "either or" basis. In other words, a remediator may choose either to use the MSCs for total PCBs or the MSCs for PCBs that are Aroclor-specific.

The Department has requested that the CSSAB endorse the proposed regulations. While the CSSAB can endorse many elements of the proposed regulations, it cannot provide a full endorsement of the regulations. Specifically, the CSSAB has concerns that the underlying science on which the MSCs for vanadium are based has low confidence as described in further detail below. Further, the residential soil MSC for vanadium is below background levels and will have a significant detrimental impact on the clean fill program. The CSSAB recommends revision or removal of the MSCs for vanadium that are included in the proposed regulations. We look forward to working with the Department with the

Honorable Patrick McDonnell November 4, 2019 Page 2

objective of making needed changes to the MSCs for vanadium before the proposed regulations are finalized.

As the CSSAB has explained in discussions with the Department and various submittals that it has made to the Department, the MSC for vanadium in soils at residential properties that was included in the most recent set of amendments to the regulations under Act 2 is well below naturally occurring background levels of vanadium and is significantly out of step with screening values and cleanup standards for vanadium developed by the United States Environmental Protection Agency ("EPA") and other state regulatory agencies. In fact, it appears to be substantially lower than any published federal or state value. The Department has based the MSCs for vanadium on a Provisional Peer-Reviewed Toxicity Value ("PPRTV") published by EPA's National Center for Environmental Assessment in 2009. The PPRTV database was developed by EPA to quantitatively evaluate the risk of chemicals that have not been evaluated in EPA's Integrated Risk Information System ("IRIS"), the database of toxicological information that is generally given the greatest weight in risk evaluations. The PPRTVs are developed specifically for use in site-specific risk assessments for EPA's Superfund Program. That process does not include interagency review or the external peer review with a public notice and comment period required for toxicity values to be placed in IRIS.

The PPRTV for vanadium is based on studies using sodium metavanadate. EPA has applied an uncertainty factor of 3,000 to the PPRTV for vanadium and has assigned a "low confidence" rating to the PPRTV for vanadium. Notwithstanding these limitations, the Department is using the PPRTV for vanadium even though information for another vanadium compound (vanadium pentoxide) is available in IRIS. The current oral toxicity value in the IRIS database is assigned a "low confidence" rating. It was developed in 1987 using an uncertainty factor of 100. We note that both vanadium pentoxide and sodium metavanadate are vanadium compounds containing vanadium in a +5 oxidation state. Although the toxicological information regarding vanadium pentoxide (and other vanadium compounds) is under review by EPA and a draft external peer review evaluation from 2011 suggests that the uncertainty factor should potentially be higher, that information continues to be included in the IRIS database (i.e., EPA has not removed that information).

We also note that regional screening levels ("RSLs") have been developed for use in remediation activities at Superfund sites being addressed pursuant to the Comprehensive Environmental Response, Compensation and Liability Act and corrective action sites pursuant to the Resource Conservation and Recovery Act. The RSLs are used to screen on a threshold basis whether the presence of particular substances requires further investigation or cleanup at such sites. Screening values based on the RSLs serve a similar purpose in the context of sites being addressed under the site-specific standard of Act 2. The information for vanadium pentoxide rather than for sodium metavanadate was used for the RSLs for vanadium.

Due to uncertainties in the science underlying the toxicity for vanadium and its compounds, EPA has indicated that it plans to conduct a further evaluation of the toxicity of various vanadium compounds as part of the IRIS program driven in part by concerns over the level of confidence in the toxicological information that is available. However, there is no completion date scheduled for that evaluation and

Honorable Patrick McDonnell November 4, 2019 Page 3

the first step of the evaluation is only targeted to take place during the second quarter of fiscal year 2020.

The MSCs for vanadium have already created significant implementation problems at sites being remediated in Pennsylvania under Act 2 and those issues will continue if no changes are made. Moreover, the Department is incorporating by reference the MSC for vanadium in soils at residential properties as the clean fill standard in the revised version of the Management of Fill Policy that was published in the Pennsylvania Bulletin on November 2, 2019, and is mandating that historic fill be analyzed for vanadium in order to qualify as clean fill. The impact of reducing the clean fill standard to a level well below background concentrations should not be underestimated.

Given the forgoing considerations and current circumstances, there are multiple options available to the Department to develop updated MSCs for vanadium rather than leaving the MSCs where they are. Among these options is eliminating the MSCs for vanadium until EPA completes its additional evaluation of the toxicity of various vanadium compounds.

The CSSAB remains committed to working with the Department to develop MSCs for vanadium that are protective of human health and the environment, while taking into account the toxicological information that exists, the level of confidence in that information and the need to avoid needlessly complicating cleanup activities under Act 2 and clean fill determinations under the Management of Fill Policy. We look forward to this continuing process with the objective of making needed changes to the MSCs for vanadium before the proposed regulations are finalized.

Respectfully submitted,

Charles D. Campbell

Charles D. Campbell

McDarl N. Whay

Chair/CSSAB

Michael M. Meloy Vice-Chair/CSSAB

cc: Troy Conrad, Program Manager (tconrad@pa.gov)

Lee McDonnell, Program Manager (lemcdonnell@pa.gov)

Mike Maddigan, Environmental Group Manager (mmaddigan@pa.gov)

	at a	e dire
	¥ *	

January 27, 2020

David Sumner
Executive Director
Independent Regulatory Review Commission
333 Market Street, 14th Floor
Harrisburg, PA 17120

Re: Proposed Rulemaking: Administration of the Land Recycling Program (#7-552)

Dear Mr. Sumner:

Pursuant to Section 5(a) of the Regulatory Review Act, please find enclosed a copy of a proposed rulemaking for review by the Independent Regulatory Review Commission (Commission). This proposal is scheduled for publication in the *Pennsylvania Bulletin* on February 15, 2020, with a 60-day public comment period. The Environmental Quality Board (EQB or Board) adopted this proposal on November 19, 2019.

The enclosed proposed rulemaking amends 25 Pa. Code Chapter 250 (relating to administration of the land recycling program) to update Statewide health standard medium-specific concentrations (MSC) pertaining to cleanup of soil and groundwater contamination for many contaminants. DEP is also proposing to add MSCs for three new contaminants, including Perfluorooctanoic Acid (PFOA), Perfluorooctance Sulfonate (PFOS), and Perfluorobutane Sulfonate (PFBS). These contaminants are within the Per- and Poly-fluoroalkyl Acid (PFAS) family of compounds for which the U.S. Environmental Protection Agency (EPA) has published toxicological data. The proposal would also clarify administrative elements of Chapter 250.

This proposed rulemaking is authorized under sections 104(a) and 303(a) of the Land Recycling and Environmental Remediation Standards Act (Act 2), 35 P.S. §§ 6026.104(a) and 6026.303(a), which direct the Board to adopt and amend periodically by regulation Statewide health standards for regulated substances for each environmental medium. This includes any health-based standards adopted by the Federal government by regulation or statute, and health advisory levels (HAL), and which direct the Board to promulgate appropriate mathematically valid statistical tests to define compliance with Act 2, and other regulations as necessary to implement the provisions of Act 2.

Chapter 250 requires that the Department of Environmental Protection (Department) review and update MSC values and the associated toxicological data on a timely basis to ensure that environmental response actions at contaminated sites are remediated based on current EPA guidance and current toxicological information. The Board last promulgated amendments to Chapter 250 on August 27, 2016 (46 Pa.B. 5655). This ongoing review process ensures the protection of public health and the environment from exposures to regulated substances,

	T 4 9

especially when it has been determined that lower concentrations of a regulated substance are necessary. When it has been determined that higher concentrations of regulated substances are protective and meet the standards established by the statute, this process will avoid unnecessary expense for entities remediating contaminated property for redevelopment.

In addition to updating Chapter 250 MSCs, as previously noted, this proposed rulemaking includes changes that would add groundwater and soil MSCs for three compounds in the PFAS family – PFBS, PFOS, and PFOA. The proposed standards for these three chemicals are based on data in toxicological studies published by EPA. Under Act 2, the Department directly incorporated EPA's 2016 HALs for PFOS and PFOA as groundwater MSCs and used EPA's data for those HALs to calculate soil MSCs for both compounds. With respect to PFBS, the Department is proposing soil and groundwater standards based on a 2014 EPA Provision Peer-Reviewed Toxicity Value (PPRTV).

Finally, this proposed rulemaking would clarify procedural issues related to the administrative requirements of Act 2. In particular, this proposed rulemaking would clarify requirements for remediators and municipalities regarding public participation and public involvement plans, update requirements for acceptable "practical quantitation limits" related to the precision of laboratory testing, update requirements for professional seals from professional geologists or engineers, provide resources to calculate MSCs, and clarify the proper submission of various reports related to the Act 2 Site-Specific Standard.

These proposed amendments would affect owners, operators and purchasers of properties and facilities who are remediating contaminated sites. These proposed changes are not expected to add any significant costs, overall, to the cleanup of contaminated sites under this program.

The number of completed remediations vary each year. On average, remediators apply the Act 2 remediation standard to approximately 800 contaminated properties across the Commonwealth. Generally, any cost related to a given site remediation depends on which regulated substances are being remediated and what the specific soil and groundwater conditions are at the site.

The Department worked with the Cleanup Standards Scientific Advisory Board (CSSAB) during the development of this proposed rulemaking. CSSAB, established by Section 105 of Act 2, 35 P.S. § 6026.105, consists of professionals with cross-sectional backgrounds, including engineering, biology, hydrogeology, statistics, medicine, chemistry, toxicology and other related fields. CSSAB assists the Department and the Board to develop Statewide health standards, determining the appropriate statistically and scientifically valid procedures and risk factors, and provides other technical advice as needed to implement Act 2.

During CSSAB meetings on August 1, 2018, February 13, 2019, and June 12, 2019, CSSAB members were given the opportunity to review and provide feedback on draft regulatory amendments to Chapter 250. The Department worked with the CSSAB to resolve concerns and agreed to evaluate additional suggestions during the next review cycle for this rulemaking. The CSSAB additionally met on October 29, 2019, to further discuss the rule. Following these presentations and discussions, the CSSAB issued a letter related to the proposed regulatory amendments included in this rulemaking.

Ó	0	

Lama F. Eduige

As set forth in the Regulatory Review Act, the Department will consider any comments and recommendations made by the Commission, as well as the House and Senate Environmental Resources and Energy Committees and public commenters, prior to final adoption of the enclosed rulemaking.

Please contact me by e-mail at ledinger@pa.gov or by telephone at 717.783.8727 if you have any questions or need additional information.

Sincerely,

Laura Edinger

Regulatory Coordinator

Enclosures

ale de la companya d La companya de la companya de	Arrest a		

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION POLICY OFFICE

TRANSMITTAL SHEET FOR REGULATIONS SUBJECT TO THE REGULATORY REVIEW ACT

I.D. NUMBER: 7-352	n to the original ori		
SUBJECT: Adm nistration of the land Recycling Program			
AGENCY: DEPARTMENT OF ENVIRONMENTA			
TYPE OF	REGULATION		
☑ Proposed Regulation	RECEIVED		
Final Regulation	المعالمة الم		
☐ Final Regulation with Notice of Proposed Rule	making Omitted JAN 2 7 2020		
☐ 120-day Emergency Certification of the Attorn	ey General Independent Regulatory Review Commission		
☐ 120-day Emergency Certification of the Gover	nor		
☐ Delivery of Tolled Regulation a. ☐ With Revisions b. ☐ Without Revisions			
FILING OF REGULATION			
DATE SIGNATURE	DESIGNATION		
1/21/20 Panela J Neward	Majority Chair, HOUSE COMMITTEE ON ENVIRONMENTAL RESOURCES & ENERGY REPRESENTATIVE Dary MET CAFE		
Minority Chair, HOUSE COMMITTEE ON ENVIRONMENTAL RESOURCES & ENERGY Representative Citig Vitali			
Majority Chair, SENATE COMMITTEE ON ENVIRONMENTAL RESOURCES & ENERGY Sever Clare Yaw			
1/27/20 Harry Kin	Minority Chair, SENATE COMMITTEE ON ENVIRONMENTAL RESOURCES & ENERGY SLAWY Start Santardero		
1/27/20 K/Corper	INDEPENDENT REGULATORY REVIEW COMMISSION		
	ATTORNEY GENERAL (for Final Omitted only)		
1/27/20 Sana Fisher	LEGISLATIVE REFERENCE BUREAU (for Proposed only)		